06.12.2012 Views

H e m a t o lo g y E d u c a t io n - European Hematology Association

H e m a t o lo g y E d u c a t io n - European Hematology Association

H e m a t o lo g y E d u c a t io n - European Hematology Association

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Figure 2. HRS cells and their precursors. The HRS tumor<br />

c<strong>lo</strong>ne is most likely derived from germinal center B cells.<br />

As lymphoma deve<strong>lo</strong>pment is a multi-step process, one<br />

can postulate that HRS precursor cells exist that carry<br />

some, but not all of the transforming events of the HRS<br />

c<strong>lo</strong>ne. These cells may also persist in the patient. Among<br />

the tumor cells, the mononucleated Hodgkin cells are the<br />

proliferative compartment that give rise to more Hodgkin<br />

cells and through endomitosis to multinucleated<br />

Reed/Sternberg cells. These latter cells have little if any<br />

proliferative capacity. It is currently debated whether HRS<br />

stem cells exist that feed the HRS tumor c<strong>lo</strong>ne. As HRS<br />

cells of a given c<strong>lo</strong>ne carry identical Ig V gene rearrangements<br />

and an identical somatic mutat<strong>io</strong>n pattern of these<br />

rearrangements, also putative HRS stem cells must carry<br />

the same V reg<strong>io</strong>n gene sequences. The pre-malignant<br />

HRS precursor cells carry the same Ig V genes and may<br />

have identical or partly different mutat<strong>io</strong>n patterns. As germinal<br />

center B cells c<strong>lo</strong>nes can give rise to very large populat<strong>io</strong>ns<br />

of <strong>lo</strong>ng-lived memory B cells, cells with the same<br />

Ig V gene rearrangement as the HRS cells (but presumably<br />

different mutat<strong>io</strong>n patterns) may also be found among normal<br />

memory B cells. The horizonal lines in the cells indicate<br />

an Ig V gene rearrangement and the vertical lines<br />

exemplify somatic point mutat<strong>io</strong>ns.<br />

cells for the maintenance of the HRS tumor c<strong>lo</strong>ne, and it<br />

remains to be shown whether side populat<strong>io</strong>n cells<br />

c<strong>lo</strong>nally related to the HRS cells also exist in vivo.<br />

Taken together, although the identificat<strong>io</strong>n of side<br />

populat<strong>io</strong>n cells in some HL cell lines and some other<br />

observat<strong>io</strong>ns might indicate that HRS stem cells exist, it<br />

still remains unclear whether such cells exist in vivo in<br />

the patient, and if so, what their role is in the establishment<br />

and perpetuat<strong>io</strong>n of the HRS tumor c<strong>lo</strong>ne.<br />

Moreover, it will be important to clarify whether side<br />

populat<strong>io</strong>n cells are responsible for treatment failure in<br />

some patients.<br />

References<br />

1. Swerd<strong>lo</strong>w SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein<br />

H, et al. Classificat<strong>io</strong>n of Tumours of Haematopoietic and<br />

Lymphoid Tissues 4th ed. Lyon: IARC Press; 2008.<br />

2. Diehl V, Thomas RK, Re D. Part II: Hodgkin’s lymphoma-diagnosis<br />

and treatment. Lancet Oncol. 2004;5:19-26.<br />

3. Küppers R. The b<strong>io</strong><strong>lo</strong>gy of Hodgkin’s lymphoma. Nat Rev<br />

Cancer. 2009;9:15-27.<br />

4. Braeuninger A, Küppers R, Strickler JG, Wacker HH, Rajewsky<br />

K, Hansmann ML. Hodgkin and Reed-Sternberg cells in lymphocyte<br />

predominant Hodgkin disease represent c<strong>lo</strong>nal populat<strong>io</strong>ns<br />

of germinal center-derived tumor B cells. Proc Natl<br />

Acad Sci U S A. 1997;94:9337-42.<br />

5. Kanzler H, Küppers R, Hansmann ML, Rajewsky K. Hodgkin<br />

and Reed-Sternberg cells in Hodgkin’s disease represent the<br />

outgrowth of a dominant tumor c<strong>lo</strong>ne derived from (crippled)<br />

germinal center B cells. J Exp Med. 1996;184:1495-505.<br />

6. Küppers R, Rajewsky K, Zhao M, Simons G, Laumann R,<br />

Fischer R, et al. Hodgkin disease: Hodgkin and Reed-Sternberg<br />

cells picked from histo<strong>lo</strong>gical sect<strong>io</strong>ns show c<strong>lo</strong>nal immunog<strong>lo</strong>b-<br />

London, United Kingdom, June 9-12, 2011<br />

ulin gene rearrangements and appear to be derived from B cells<br />

at var<strong>io</strong>us stages of deve<strong>lo</strong>pment. Proc Natl Acad Sci U S A.<br />

1994;91:10962-6.<br />

7. Maraf<strong>io</strong>ti T, Hummel M, Anagnostopou<strong>lo</strong>s I, Foss HD, Falini<br />

B, Delsol G, et al. Origin of nodular lymphocyte-predominant<br />

Hodgkin’s disease from a c<strong>lo</strong>nal expans<strong>io</strong>n of highly mutated<br />

germinal-center B cells. N Engl J Med. 1997;337:453-8.<br />

8. Schmitz R, Stanelle J, Hansmann M-L, Küppers R. Pathogenesis<br />

of classical and lymphocyte-predominant Hodgkin lymphoma.<br />

Annu Rev Pathol. 2009;4:151-74.<br />

9. Schwering I, Bräuninger A, Klein U, Jungnickel B, Tinguely M,<br />

Diehl V, et al. Loss of the B-lineage-specific gene express<strong>io</strong>n<br />

program in Hodgkin and Reed-Sternberg cells of Hodgkin<br />

lymphoma. B<strong>lo</strong>od. 2003;101:1505-12.<br />

10. Stein H, Maraf<strong>io</strong>ti T, Foss HD, Laumen H, Hummel M,<br />

Anagnostopou<strong>lo</strong>s I, et al. Down-regulat<strong>io</strong>n of BOB.1/OBF.1<br />

and Oct2 in classical Hodgkin disease but not in lymphocyte<br />

predominant Hodgkin disease correlates with immunog<strong>lo</strong>bulin<br />

transcript<strong>io</strong>n. B<strong>lo</strong>od. 2001;97:496-501.<br />

11. Hertel CB, Zhou XG, Hamilton-Dutoit SJ, Junker S. Loss of B<br />

cell identity correlates with <strong>lo</strong>ss of B cell-specific transcript<strong>io</strong>n<br />

factors in Hodgkin/Reed-Sternberg cells of classical Hodgkin<br />

lymphoma. Oncogene. 2002;21:4908-20.<br />

12. Re D, Müschen M, Ahmadi T, Wickenhauser C, Staratschek-<br />

Jox A, Holtick U, et al. Oct-2 and Bob-1 deficiency in Hodgkin<br />

and Reed Sternberg cells. Cancer Res. 2001;61:2080-4.<br />

13. Torlakovic E, Tierens A, Dang HD, Delabie J. The transcript<strong>io</strong>n<br />

factor PU.1, necessary for B-cell deve<strong>lo</strong>pment is expressed<br />

in lymphocyte predominance, but not classical Hodgkin’s disease.<br />

Am J Pathol. 2001;159:1807-14.<br />

14. Ushmorov A, Leithäuser F, Sakk O, Weinhausel A, Popov SW,<br />

Möller P, et al. Epigenetic processes play a major role in B-cellspecific<br />

gene silencing in classical Hodgkin lymphoma. B<strong>lo</strong>od.<br />

2005;107:2493-500.<br />

15. Mathas S, Janz M, Hummel F, Hummel M, Wollert-Wulf B, Lusatis<br />

S, et al. Intrinsic inhibit<strong>io</strong>n of transcript<strong>io</strong>n factor E2A by HLH proteins<br />

ABF-1 and Id2 mediates reprogramming of neoplastic B cells<br />

in Hodgkin lymphoma. Nature Immunol. 2006;7:207-15.<br />

16. Renné C, Martin-Subero JI, Eickernjager M, Hansmann ML,<br />

Küppers R, Siebert R, et al. Aberrant express<strong>io</strong>n of ID2, a suppressor<br />

of B-cell-specific gene express<strong>io</strong>n, in Hodgkin’s lymphoma.<br />

Am J Pathol. 2006;169:655-64.<br />

17. Lamprecht B, Walter K, Kreher S, Kumar R, Hummel M, Lenze<br />

D, et al. Derepress<strong>io</strong>n of an endogenous <strong>lo</strong>ng terminal repeat<br />

activates the CSF1R proto-oncogene in human lymphoma.<br />

Nat Med. 2010;16:571-9.<br />

18. Jundt F, Acikgoz O, Kwon SH, Schwarzer R, Anagnostopou<strong>lo</strong>s<br />

I, Wiesner B, et al. Aberrant express<strong>io</strong>n of Notch1 interferes<br />

with the B-lymphoid phenotype of neoplastic B cells in classical<br />

Hodgkin lymphoma. Leukemia. 2008;22:1587-94.<br />

19. Jundt F, Anagnostopou<strong>lo</strong>s I, Förster R, Mathas S, Stein H,<br />

Dörken B. Activated Notch 1 signaling promotes tumor cell<br />

proliferat<strong>io</strong>n and survival in Hodgkin and anaplastic large cell<br />

lymphoma. B<strong>lo</strong>od. 2001;99:3398-403.<br />

20. Atayar C, Poppema S, B<strong>lo</strong>kzijl T, Harms G, Boot M, van den<br />

Berg A. Express<strong>io</strong>n of the T-cell transcript<strong>io</strong>n factors, GATA-3<br />

and T-bet, in the neoplastic cells of Hodgkin lymphomas. Am<br />

J Pathol. 2005;166:127-34.<br />

21. Stanelle J, Döring C, Hansmann ML, Küppers R. Mechanisms<br />

of aberrant GATA3 express<strong>io</strong>n in classical Hodgkin lymphoma<br />

and its consequences for the cytokine profile of Hodgkin and<br />

Reed/Sternberg cells. B<strong>lo</strong>od. 2010;116:4202-11.<br />

22. Baeuerle PA, Henkel T. Funct<strong>io</strong>n and activat<strong>io</strong>n of NF- B in the<br />

immune system. Annu Rev Immunol. 1994;12:141-79.<br />

23. Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara<br />

MY, Arnold W, et al. Constitutive nuclear factor-kappaB-RelA<br />

activat<strong>io</strong>n is required for proliferat<strong>io</strong>n and survival of<br />

Hodgkin’s disease tumor cells. J Clin Invest. 1997;100:2961-9.<br />

24. Carbone A, G<strong>lo</strong>ghini A, Gruss HJ, Pinto A. CD40 ligand is<br />

constitutively expressed in a subset of T cell lymphomas and<br />

on the microenvironmental reactive T cells of follicular lymphomas<br />

and Hodgkin’s disease. Am J Pathol. 1995;147:912-22.<br />

25. Molin D, Fischer M, Xiang Z, Larsson U, Harvima I, Venge P,<br />

et al. Mast cells express funct<strong>io</strong>nal CD30 ligand and are the<br />

predominant CD30L-positive cells in Hodgkin’s disease. Br J<br />

Haematol. 2001;114:616-23.<br />

26. Pinto A, Aldinucci D, G<strong>lo</strong>ghini A, Zagonel V, Degan M,<br />

Improta S, et al. Human eosinophils express funct<strong>io</strong>nal CD30<br />

ligand and stimulate proliferat<strong>io</strong>n of a Hodgkin’s disease cell<br />

line. B<strong>lo</strong>od. 1996;88:3299-305.<br />

27. Gires O, Zimber-Strobl U, Gonnella R, Ueffing M, Marschall<br />

G, Zeidler R, et al. Latent membrane protein 1 of Epstein-Barr<br />

virus mimics a constitutively active receptor molecule. EMBO<br />

J. 1997;16:6131-40.<br />

Hemato<strong>lo</strong>gy Educat<strong>io</strong>n: the educat<strong>io</strong>n programme for the annual congress of the <strong>European</strong> Hemato<strong>lo</strong>gy Associat<strong>io</strong>n | 2011; 5(1) | 155 |

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!