06.12.2012 Views

H e m a t o lo g y E d u c a t io n - European Hematology Association

H e m a t o lo g y E d u c a t io n - European Hematology Association

H e m a t o lo g y E d u c a t io n - European Hematology Association

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

leukemia with inv(16) and t(8;21): a Cancer and Leukemia<br />

Group B Study. J Clin Oncol. 2006;24:3904-11.<br />

5. Gale RE, Green C, Allen C, et al. The impact of FLT3 internal<br />

tandem duplicat<strong>io</strong>n mutant level, number, size, and interact<strong>io</strong>n<br />

with NPM1 mutat<strong>io</strong>ns in a large cohort of young adult patients<br />

with acute mye<strong>lo</strong>id leukemia. B<strong>lo</strong>od. 2008;111:2776-84.<br />

6. Caligiuri MA, Schichman SA, Strout MP, et al. Molecular<br />

rearrangement of the ALL-1 gene in acute mye<strong>lo</strong>id leukemia<br />

without cytogenetic evidence of 11q23 chromosomal trans<strong>lo</strong>cat<strong>io</strong>ns.<br />

Cancer Res. 1994;54:370-73.<br />

7. Whitman SP, Hackanson B, Liyanarachchi S, et al. DNA<br />

hypermethylat<strong>io</strong>n and epigenetic silencing of the tumor suppressor<br />

gene, SLC5A8, in acute mye<strong>lo</strong>id leukemia with the<br />

MLL partial tandem duplicat<strong>io</strong>n. B<strong>lo</strong>od. 2008;112:2013-16.<br />

8. Renneville A, Boissel N, Zurawski V, et al. Wilms tumor 1<br />

gene mutat<strong>io</strong>ns are associated with a higher risk of recurrence<br />

in young adults with acute mye<strong>lo</strong>id leukemia: a study from<br />

the Acute Leukemia French Associat<strong>io</strong>n. Cancer. 2009;115:<br />

3719-27.<br />

9. Schnittger S, Dicker F, Kern W, et al. RUNX1 mutat<strong>io</strong>ns are<br />

frequent in de novo AML with non complex karyotype and<br />

confer an unfavourable prognosis. B<strong>lo</strong>od. 2010.<br />

10. Falini B, Mecucci C, Tiacci E, et al. Cytoplasmic nucleophosmin<br />

in acute mye<strong>lo</strong>genous leukemia with a normal karyotype.<br />

N Engl J Med. 2005;352:254-266.<br />

11. Frohling S, Schlenk RF, Stolze I, et al. CEBPA mutat<strong>io</strong>ns in<br />

younger adults with acute mye<strong>lo</strong>id leukemia and normal<br />

cytogenetics: prognostic relevance and analysis of cooperating<br />

mutat<strong>io</strong>ns. J Clin Oncol. 2004;22:624-33.<br />

12. Lin LI, Chen CY, Lin DT, et al. Characterizat<strong>io</strong>n of CEBPA<br />

mutat<strong>io</strong>ns in acute mye<strong>lo</strong>id leukemia: most patients with<br />

CEBPA mutat<strong>io</strong>ns have biallelic mutat<strong>io</strong>ns and show a distinct<br />

immunophenotype of the leukemic cells. Clin Cancer<br />

Res. 2005;11:1372-79.<br />

13. Wouters BJ, Lowenberg B, Erpelinck-Verschueren CA, van<br />

Putten WL, Valk PJ, Delwel R. Double CEBPA mutat<strong>io</strong>ns, but<br />

not single CEBPA mutat<strong>io</strong>ns, define a subgroup of acute<br />

mye<strong>lo</strong>id leukemia with a distinctive gene express<strong>io</strong>n profile<br />

that is uniquely associated with a favorable outcome. B<strong>lo</strong>od.<br />

2009;113:3088-91.<br />

14. Metzeler KH, Dufour A, Benthaus T, et al. ERG express<strong>io</strong>n is<br />

an independent prognostic factor and al<strong>lo</strong>ws refined risk<br />

stratificat<strong>io</strong>n in cytogenetically normal acute mye<strong>lo</strong>id<br />

leukemia: a comprehensive analysis of ERG, MN1, and BAALC<br />

transcript levels using oligonucleotide microarrays. J Clin<br />

Oncol. 2009;27:5031-38.<br />

15. Groschel S, Lugthart S, Schlenk RF, et al. High EVI1 express<strong>io</strong>n<br />

predicts outcome in younger adult patients with acute<br />

mye<strong>lo</strong>id leukemia and is associated with distinct cytogenetic<br />

abnormalities. J Clin Oncol. 2010;28:2101-07.<br />

16. Grimwade D, Hills RK, Moorman AV, et al. Refinement of<br />

cytogenetic classificat<strong>io</strong>n in acute mye<strong>lo</strong>id leukemia: determinat<strong>io</strong>n<br />

of prognostic significance of rare recurring chromosomal<br />

abnormalities among 5876 younger adult patients treated<br />

in the United Kingdom Medical Research Council trials.<br />

B<strong>lo</strong>od. 2010;116:354-65.<br />

17. Haferlach C, Dicker F, Herholz H, Schnittger S, Kern W,<br />

Haferlach T. Mutat<strong>io</strong>ns of the TP53 gene in acute mye<strong>lo</strong>id<br />

leukemia are strongly associated with a complex aberrant<br />

karyotype. Leukemia. 2008;22:1539-41.<br />

18. Breems DA, Van Putten WL, De Greef GE, et al. Monosomal<br />

karyotype in acute mye<strong>lo</strong>id leukemia: a better indicator of<br />

poor prognosis than a complex karyotype. J Clin Oncol.<br />

2008;26:4791-97.<br />

19. Medeiros BC, Othus M, Fang M, Roulston D, Appelbaum FR.<br />

Prognostic impact of monosomal karyotype in young adult<br />

and elderly acute mye<strong>lo</strong>id leukemia: the Southwest Onco<strong>lo</strong>gy<br />

Group (SWOG) experience. B<strong>lo</strong>od. 2010;116:2224-8.<br />

20. Raghavan M, Lillington DM, Skoulakis S, et al. Genome-wide<br />

single nucleotide polymorphism analysis reveals frequent partial<br />

uniparental disomy due to somatic recombinat<strong>io</strong>n in<br />

acute mye<strong>lo</strong>id leukemias. Cancer Res. 2005;65:375-8.<br />

21. Suela J, Alvarez S, Cifuentes F, et al. DNA profiling analysis of<br />

100 consecutive de novo acute mye<strong>lo</strong>id leukemia cases<br />

reveals patterns of genomic instability that affect all cytogenetic<br />

risk groups. Leukemia. 2007;21:1224-31.<br />

22. Delhommeau F, Dupont S, Della Valle V, et al. Mutat<strong>io</strong>n in<br />

TET2 in mye<strong>lo</strong>id cancers. N Engl J Med. 2009;360:2289-301.<br />

23. Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutat<strong>io</strong>ns in acute<br />

mye<strong>lo</strong>id leukemia. N Engl J Med. 2010;363:2424-33.<br />

24. Mardis ER, Ding L, Dooling DJ, et al. Recurring mutat<strong>io</strong>ns<br />

found by sequencing an acute mye<strong>lo</strong>id leukemia genome. N<br />

Engl J Med. 2009;361:1058-66.<br />

25. Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene<br />

London, United Kingdom, June 9-12, 2011<br />

mutat<strong>io</strong>ns identify novel molecular subsets within de novo<br />

cytogenetically normal acute mye<strong>lo</strong>id leukemia: a Cancer and<br />

Leukemia Group B study. J Clin Oncol. 2010;28:2348-55.<br />

26. Boissel N, Nibourel O, Renneville A, et al. Prognostic impact<br />

of isocitrate dehydrogenase enzyme isoforms 1 and 2 mutat<strong>io</strong>ns<br />

in acute mye<strong>lo</strong>id leukemia: a study by the Acute<br />

Leukemia French Associat<strong>io</strong>n group. J Clin Oncol. 2010;28:<br />

3717-23.<br />

27. Carbuccia N, Trouplin V, Gelsi-Boyer V, et al. Mutual exclus<strong>io</strong>n<br />

of ASXL1 and NPM1 mutat<strong>io</strong>ns in a series of acute<br />

mye<strong>lo</strong>id leukemias. Leukemia. 2010;24:469-73.<br />

28. Haferlach T, Kohlmann A, Schnittger S, et al. AML M3 and<br />

AML M3 variant each have a distinct gene express<strong>io</strong>n signature<br />

but also share patterns different from other genetically<br />

defined AML subtypes. Genes Chromosomes Cancer.<br />

2005;43:113-27.<br />

29. Ebert BL, Golub TR. Genomic approaches to hemato<strong>lo</strong>gic<br />

malignancies. B<strong>lo</strong>od. 2004;104:923-32.<br />

30. Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful<br />

gene-express<strong>io</strong>n profiles in acute mye<strong>lo</strong>id leukemia. N Engl J<br />

Med. 2004;350:1617-28.<br />

31. Bullinger L, Dohner K, Bair E, et al. Use of gene-express<strong>io</strong>n<br />

profiling to identify prognostic subclasses in adult acute<br />

mye<strong>lo</strong>id leukemia. N Engl J Med. 2004;350:1605-16.<br />

32. Figueroa ME, Reimers M, Thompson RF, et al. An integrative<br />

genomic and epigenomic approach for the study of transcript<strong>io</strong>nal<br />

regulat<strong>io</strong>n. PLoS ONE. 2008;3:e1882.<br />

33. Figueroa ME, Lugthart S, Li Y, et al. DNA methylat<strong>io</strong>n signatures<br />

identify b<strong>io</strong><strong>lo</strong>gically distinct subtypes in acute mye<strong>lo</strong>id<br />

leukemia. Cancer Cell. 2010;17:13-27.<br />

34. Muller-Tidow C, Klein HU, Hascher A, et al. Profiling of histone<br />

H3 lysine 9 trimethylat<strong>io</strong>n levels predicts transcript<strong>io</strong>n<br />

factor activity and survival in acute mye<strong>lo</strong>id leukemia. B<strong>lo</strong>od.<br />

2010;116:3564-71.<br />

35. Lu J, Getz G, Miska EA, et al. MicroRNA express<strong>io</strong>n profiles<br />

classify human cancers. Nature. 2005;435:834-8.<br />

36. Li Z, Lu J, Sun M, et al. Distinct microRNA express<strong>io</strong>n profiles<br />

in acute mye<strong>lo</strong>id leukemia with common trans<strong>lo</strong>cat<strong>io</strong>ns. Proc<br />

Natl Acad Sci U S A. 2008;105:15535-40.<br />

37. Garzon R, Volinia S, Liu CG, et al. MicroRNA signatures associated<br />

with cytogenetics and prognosis in acute mye<strong>lo</strong>id<br />

leukemia. B<strong>lo</strong>od. 2008;111:3183-9.<br />

38. Marcucci G, Radmacher MD, Maharry K, et al. MicroRNA<br />

express<strong>io</strong>n in cytogenetically normal acute mye<strong>lo</strong>id leukemia.<br />

N Engl J Med. 2008;358:1919-28.<br />

39. Fernandez HF, Sun Z, Yao X, et al. Anthracycline dose intensificat<strong>io</strong>n<br />

in acute mye<strong>lo</strong>id leukemia. N Engl J Med. 2009;<br />

361:1249-59.<br />

40. Schlenk RF, Dohner K, Krauter J, et al. Mutat<strong>io</strong>ns and treatment<br />

outcome in cytogenetically normal acute mye<strong>lo</strong>id<br />

leukemia. N Engl J Med. 2008;358:1909-18.<br />

41. Green CL, Koo KK, Hills RK, Burnett AK, Linch DC, Gale RE.<br />

Prognostic significance of CEBPA mutat<strong>io</strong>ns in a large cohort<br />

of younger adult patients with acute mye<strong>lo</strong>id leukemia:<br />

impact of double CEBPA mutat<strong>io</strong>ns and the interact<strong>io</strong>n with<br />

FLT3 and NPM1 mutat<strong>io</strong>ns. J Clin Oncol. 2010;28:2739-47.<br />

42. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human<br />

acute mye<strong>lo</strong>id leukaemia after transplantat<strong>io</strong>n into SCID<br />

mice. Nature. 1994;367:645-8.<br />

43. Guan Y, Gerhard B, Hogge DE. Detect<strong>io</strong>n, isolat<strong>io</strong>n, and stimulat<strong>io</strong>n<br />

of quiescent primitive leukemic progenitor cells from<br />

patients with acute mye<strong>lo</strong>id leukemia (AML). B<strong>lo</strong>od. 2003;<br />

101:3142-9.<br />

44. Terpstra W, P<strong>lo</strong>emacher RE, Prins A, et al. Fluorouracil selectively<br />

spares acute mye<strong>lo</strong>id leukemia cells with <strong>lo</strong>ng-term<br />

growth abilities in immunodeficient mice and in culture.<br />

B<strong>lo</strong>od. 1996;88:1944-50.<br />

45. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson<br />

TM, Morrison SJ. Efficient tumour format<strong>io</strong>n by single<br />

human melanoma cells. Nature. 2008;456:593-8.<br />

46. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor<br />

growth need not be driven by rare cancer stem cells. Science.<br />

2007;317:337.<br />

47. Barabe F, Kennedy JA, Hope KJ, Dick JE. Modeling the initiat<strong>io</strong>n<br />

and progress<strong>io</strong>n of human acute leukemia in mice.<br />

Science. 2007;316:600-4.<br />

48. Anderson K, Lutz C, van Delft FW, et al. Genetic variegat<strong>io</strong>n<br />

of c<strong>lo</strong>nal architecture and propagating cells in leukaemia. Nature.<br />

2011;469:356-61.<br />

49. Alcalay M, Tiacci E, Bergomas R, et al. Acute mye<strong>lo</strong>id<br />

leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML)<br />

shows a distinct gene express<strong>io</strong>n profile characterized by upregulat<strong>io</strong>n<br />

of genes involved in stem-cell maintenance. B<strong>lo</strong>od.<br />

2005;106:899-902.<br />

Hemato<strong>lo</strong>gy Educat<strong>io</strong>n: the educat<strong>io</strong>n programme for the annual congress of the <strong>European</strong> Hemato<strong>lo</strong>gy Associat<strong>io</strong>n | 2011; 5(1) | 33 |

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!