06.12.2012 Views

H e m a t o lo g y E d u c a t io n - European Hematology Association

H e m a t o lo g y E d u c a t io n - European Hematology Association

H e m a t o lo g y E d u c a t io n - European Hematology Association

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

92(9):1266-7.<br />

36. Bensinger TA, Gillette PN. Hemolysis in sickle cell disease.<br />

Arch Intern Med. 1974;133:624-31.<br />

37. Gladwin MT, Sachdev V, Jison ML, et al. Pulmonary hypertens<strong>io</strong>n<br />

as a risk factor for death in patients with sickle cell disease.<br />

N Engl J Med. 2004;350:886-95.<br />

38. Kato GJ, McGowan V, Machado RF, et al. Lactate dehydrogenase<br />

as a b<strong>io</strong>marker of hemolysis-associated nitric oxide resistance,<br />

priapism, leg ulcerat<strong>io</strong>n, pulmonary hypertens<strong>io</strong>n, and<br />

death in patients with sickle cell disease. B<strong>lo</strong>od. 2006;107:<br />

2279-85.<br />

39. Bunn HF, Nathan DG, Dover GJ, Hebbel RP, Platt OS, Rosse<br />

WF, Ware RE. Pulmonary hypertens<strong>io</strong>n and nitric oxide deplet<strong>io</strong>n<br />

in sickle cell disease. B<strong>lo</strong>od. 2010;116(5):687-92.<br />

40. Hebbel RP. Reconstructing sickle cell disease: a data-based<br />

analysis of the “hyper-hemolysis paradigm” for pulmonary<br />

hypertens<strong>io</strong>n from the perspective of evidence-based medicine.<br />

Am J Hematol., 2011;86(2):123-154.<br />

41. Wagener FA, Eggert A, Boerman OC, et al. Heme is a potent<br />

inducer of inflammat<strong>io</strong>n in mice and is counteracted by heme<br />

oxygenase. B<strong>lo</strong>od. 2001;98:1802-11.<br />

42. Lee A, Thomas P, Cupidore L, Serjeant B, Serjeant G.<br />

Improved survival in homozygous sickle cell disease: lessons<br />

from a cohort study. Br Med J. 1995;311:1600-2.<br />

43. Platt OS, Thorington BD, Brambilla DJ, et al. Pain in sickle cell<br />

disease. Rates and risk factors. N Engl J Med. 1991;325:11-6.<br />

44. Platt OS, Brambilla DJ, Rosse WF, et al. Mortality in sickle cell<br />

disease: life expectancy and risk factors for early death. N<br />

Engl J Med. 1994;330:1639-44.<br />

45. McClish DK, Smith WR, Dahman BA, et al. Pain site frequency<br />

and <strong>lo</strong>cat<strong>io</strong>n in sickle cell disease. Pain. 2009;145(1-2):246-51.<br />

46. Vichinsky EP, Neumayr LD, Earles AN, et al. Causes and outcomes<br />

of the acute chest syndrome in sickle cell disease.<br />

Nat<strong>io</strong>nal Acute Chest Syndrome Study Group. N Engl J Med.<br />

2000;342:1855-65.<br />

47. Ohene-Frempong K, Weiner SJ, Sleeper LA, et al. Cerebrovascular<br />

accidents in sickle cell disease: rates and risk factors. B<strong>lo</strong>od.<br />

1998;91(1):288-94.<br />

48. Smith WR, Bovbjerg VE, Penberthy LT, et al. Understanding pain<br />

and improving management of sickle cell disease: the PiSCES<br />

study. J Natl Med Assoc. 2005;97(2):183-93.<br />

49. Miller ST, Sleeper LA, Pege<strong>lo</strong>w CH, et al. Predict<strong>io</strong>n of adverse<br />

outcomes in children with sickle cell disease. N Engl J Med. 2000;<br />

342:83-9.<br />

50. Frenette PS. Sickle cell vaso-occlus<strong>io</strong>n: heterotypic, multicellular<br />

aggregat<strong>io</strong>ns driven by leukocyte adhes<strong>io</strong>n. Microcirculat<strong>io</strong>n.<br />

2004;11(2):167-77.<br />

51. Quinn CT, Rogers ZR, McCavit TL, Buchanan GR. Improved<br />

survival of children and adolescents with sickle cell disease.<br />

B<strong>lo</strong>od. 2010;115:3447-52.<br />

52. Sebastiani P, So<strong>lo</strong>vieff N, Hartley SW, et al. Genetic modifiers of<br />

the severity of sickle cell anemia identified through a genomewide<br />

associat<strong>io</strong>n study. Am J Hematol. 2010;85(1):29-35.<br />

53. Van Beers EJ, van Tuijn CF, Nieuwkerk PT, Friederich PW,<br />

Vranken JH, Biemond BJ. Patient-controlled analgesia versus<br />

continous infus<strong>io</strong>n of morphine during vaso-occlusive crisis in<br />

sickle cell disease, a randomized controlled trial. Am J Hematol.<br />

2007;82(11):955-60.<br />

54. Griffin TC, McIntire D, Buchanan GR. High-dose intravenous<br />

methylpredniso<strong>lo</strong>ne therapy for pain in children and adolescents<br />

with sickle cell disease. N Engl J Med. 1994;330(11):773-7.<br />

55. Strouse JJ, Takemoto CM, Keefer JR, Kato GJ, Casella JF.<br />

Corticosteroids and increased risk of readmiss<strong>io</strong>n after acute<br />

chest syndrome in children with sickle cell disease. Pediatr B<strong>lo</strong>od<br />

Cancer. 2008;50(5):1006-12.<br />

56. Solanki DL. Sickle cell anemia, oxygen treatment, and anaemic<br />

crisis. Br Med J. 1983;287:725-6.<br />

57. Lane PK, Embury SH, Toy PT. Oxygen induced marrow red<br />

cell hypoplasia leading to transfus<strong>io</strong>n in sickle painful crisis.<br />

Am J Hematol. 1988;27:67-8.<br />

58. Adams-Graves P, Kedar A, Koshy M, et al. RheothRx (po<strong>lo</strong>xamer<br />

188) inject<strong>io</strong>n for the acute painful episode of sickle cell<br />

disease: a pi<strong>lo</strong>t study. B<strong>lo</strong>od. 1997;90(5):2041-6.<br />

59. Ataga KI, Smith WR, DeCastro LM, et al. Efficacy and safety<br />

of the Gardos Channel b<strong>lo</strong>cker, senicapoc (ICA-17043), in<br />

patients with sickle cell anemia. B<strong>lo</strong>od. 2008;111(8):3991-7.<br />

60. Chang J, Shi PA, Chiang EY, Frenette PS. Intravenous<br />

immunog<strong>lo</strong>bulins reverse acute vaso-occlusive crises in sickle<br />

cell mice through rapid inhibit<strong>io</strong>n of neutrophil adhes<strong>io</strong>n.<br />

B<strong>lo</strong>od. 2008;111(2):915-23.<br />

London, United Kingdom, June 9-12, 2011<br />

61. Kaul DK, Tsai HM, Liu XD, et al. Monoc<strong>lo</strong>nal antibodies to<br />

alphaVbeta3 (7E3 and LM609) inhibit sickle red b<strong>lo</strong>od cellendothelium<br />

interact<strong>io</strong>ns induced by platelet-activating factor.<br />

B<strong>lo</strong>od. 2000;95:368-74.<br />

62. Finnegan EM, Barabino GA, Liu XS, Chang HY, Jonczyk A,<br />

Kaul DK. Small-molecule cyclic alpha V beta 3 antagonists<br />

inhibit sickle red cell adhes<strong>io</strong>n to vascular endothelium and<br />

vasooclus<strong>io</strong>n. Am J Phys<strong>io</strong>l. 2007;293(2):H1038-45.<br />

63. Chang J, Patton JT, Sarkar A, Ernst B, Magnani JL, Frenette PS.<br />

GMI-1070, a novel pan-selectin antagonist, reverses acute vascular<br />

occlus<strong>io</strong>ns in sickle cell mice. B<strong>lo</strong>od. 2010;116(10):1779-86.<br />

64. So<strong>lo</strong>vey AA, So<strong>lo</strong>vey AN, Harkness J, Hebbel RP. Modulat<strong>io</strong>n<br />

of endothelial cell activat<strong>io</strong>n in sickle cell disease: a pi<strong>lo</strong>t study.<br />

B<strong>lo</strong>od. 2001;97(7):1937-41.<br />

65. Head CA, Swerd<strong>lo</strong>w P, McDade WA, et al. Beneficial effects<br />

of nitric oxide breathing in adult patients with sickle cell crisis.<br />

Am J Hematol. 2010;85(10):800-2.<br />

66. Hebbel RP, Vercel<strong>lo</strong>tti GM, Pace BS, et al. The HDAC<br />

inhibitors trichostatin A and suberoylanilide hydroxamic acid<br />

exhibit multiple modalities of benefit for the vascular b<strong>io</strong><strong>lo</strong>gy<br />

of sickle transgenic mice. B<strong>lo</strong>od. 2010;115(12):2483-90.<br />

67. Hebbel RP, Vercel<strong>lo</strong>tti G, Nath KA. A systems b<strong>io</strong><strong>lo</strong>gy considerat<strong>io</strong>n<br />

of the vascu<strong>lo</strong>pathy of sickle cell anemia: the need for<br />

multi-modality chemo-prophylaxis. Curr Drug Targets Card<strong>io</strong>vasc<br />

Haematol Disord. 2009;9(4):271-92.<br />

68. Charache S, Dover GJ, Moore RD, et al. Hydroxyurea: effects<br />

on hemog<strong>lo</strong>bin F product<strong>io</strong>n in patients with sickle cell anemia.<br />

B<strong>lo</strong>od. 1992;79(10):2555-65.<br />

69. Charache S, Terrin ML, Moore RD, et al. Effect of hydroxyurea<br />

on the frequency of painful crises in sickle cell anemia.<br />

Investigators of the Multicenter Study of Hydroxyurea in<br />

Sickle Cell Anemia. N Engl J Med. 1995; 332:1317-22.<br />

70. Kinney TR, Helms RW, O’Branski EE, et al. Safety of hydroxyurea<br />

in children with sickle cell anemia: results of the HUG-<br />

KIDS study, a phase I/II Pediatric Hydroxyurea Group. B<strong>lo</strong>od.<br />

1999;94(5):1550-4.<br />

71. Wang WC, Wynn LW, Rogers ZR, Scott JP, Lane PA, Ware RE.<br />

A two-year pi<strong>lo</strong>t trial of hydroxyurea in very young children<br />

with sickle-cell anemia. J Pediatr. 2001;139(6):790-6.<br />

72. Ware RE. How I use hydroxyurea to treat young patients with<br />

sickle cell anemia. B<strong>lo</strong>od. 2010;115(26):5300-11.<br />

73. Hillery CA, Du MC, Wang WC, Scott JP. Hydroxyurea therapy<br />

decreases the in vitro adhes<strong>io</strong>n of sickle erythrocytes to<br />

thrombospondin and laminin. Br J Haematol. 2000;109:322-7.<br />

74. Gambero S, Canalli AA, Traina F, et al. Therapy with hydroxyurea<br />

is associated with reduced adhes<strong>io</strong>n molecule gene and<br />

protein express<strong>io</strong>n in sickle red cells with a concomitant reduct<strong>io</strong>n<br />

in adhesive properties. Eur J Haematol. 2007;78(2):144-51.<br />

75. Cartron JP, El<strong>io</strong>n J. Erythroid adhes<strong>io</strong>n molecules in sickle cell disease:<br />

effect of hydroxyurea. Trans Clin B<strong>io</strong>l. 2008;15(1-2):39-50.<br />

76. Odievre MH, Bony V, Benkerrou M, et al. Modulat<strong>io</strong>n of erythroid<br />

adhes<strong>io</strong>n receptor express<strong>io</strong>n by hydroxyurea in children<br />

with sickle cell disease. Haemato<strong>lo</strong>gica. 2008;93:502-10.<br />

77. Styles LA, Lubin B, Vichinsky E, et al. Decrease of very late<br />

activat<strong>io</strong>n antigen-4 and CD36 on reticu<strong>lo</strong>cytes in sickle cell<br />

patients treated with hydroxyurea. B<strong>lo</strong>od. 1997;89:2554-9.<br />

78. Haynes J Jr, Obiako B, Hester RB, Baliga BS, Stevens T.<br />

Hydroxyurea attenuates activated neutrophil-mediated sickle<br />

erythrocyte membrance phosphatidylserine exposure and<br />

adhes<strong>io</strong>n to pulmonary vascular endothelium. Am J Phys. 2008;<br />

294(1):H379-85.<br />

79. Laurance S, Pellay FX, Dossou-Yovo OP, et al. Hydroxycarbamide<br />

stimulates the product<strong>io</strong>n of proinflammatory cytokines by<br />

endothelial cells: relevance to sickle cell disease. Pharmacogenetics<br />

Genomics. 2010;20(4):257-68.<br />

80. Lapoumeroulie C, Benkerrou M, Odievre MH, et al. Decreased<br />

plasma endothelin-1 levels in children with sickle cell disease<br />

treated with hydroxyurea. Haemato<strong>lo</strong>gica. 2005;90:401-3.<br />

81. Lanaro C, Franco-Penteado CF, Albuqueque DM, Saad ST,<br />

Conran N, Costa FF. Altered levels of cytokines and inflammatory<br />

mediators in plasma and leukocytes of sickle cell anemia<br />

patients and effects of hydroxyurea therapy. J Leuk B<strong>io</strong>l. 2009;<br />

85(2):235-42.<br />

82. McGann PT, Ware RE. Hydroxyurea for sickle cell anemia:<br />

what have we learned and what quest<strong>io</strong>ns remain? Curr Opin<br />

Hematol., 2011;18(3):158-165.<br />

Hemato<strong>lo</strong>gy Educat<strong>io</strong>n: the educat<strong>io</strong>n programme for the annual congress of the <strong>European</strong> Hemato<strong>lo</strong>gy Associat<strong>io</strong>n | 2011; 5(1) | 329 |

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!