06.12.2012 Views

H e m a t o lo g y E d u c a t io n - European Hematology Association

H e m a t o lo g y E d u c a t io n - European Hematology Association

H e m a t o lo g y E d u c a t io n - European Hematology Association

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

antigen. Cases can be encountered during the investigat<strong>io</strong>n<br />

of a weak antigen. As exampled, it is frequent to<br />

find the presence of both ceMO and ceAR, or both (C)ce S<br />

and ceAR.<br />

We have no response to the quest<strong>io</strong>n whether these<br />

heterozygous backgrounds in patients will prone al<strong>lo</strong><br />

immunizat<strong>io</strong>n with a clinically significant antibody.<br />

Whether the expressed epitopes encoded by one allele<br />

may compensate the missing epitopes of the antigen<br />

encoded by the other variant (and vice versa) is not<br />

known. One reason is probably that transfused patients<br />

in this situat<strong>io</strong>n are rare. There is no data showing<br />

DHTR in SCD with these types of backgrounds. Since<br />

we do not know, and based also on our experience with<br />

SCD transfus<strong>io</strong>n, we do not share the idea that a molecular<br />

compatibility should be performed for patients<br />

with variants that have not been implicated in a DHTR.<br />

This excess of precaut<strong>io</strong>n will introduce another high<br />

risk for SCD patients: the absence of transfus<strong>io</strong>n when<br />

transfus<strong>io</strong>n is the only opt<strong>io</strong>n.<br />

Conclus<strong>io</strong>ns<br />

The relevance of variants in SCD has been demonstrated<br />

for a few cases of molecular backgrounds. In all<br />

other cases, even though the product<strong>io</strong>n of antibodies<br />

has been associated with the presence of the variant in<br />

the patient, there is no data on the clinical relevance of<br />

these antibodies. A register on DHTR with involvement<br />

of variants should be implemented. The point that<br />

could be eventually relevant considering these variants<br />

is the possibility that al<strong>lo</strong> immunizat<strong>io</strong>n to variants<br />

could prone al<strong>lo</strong> immunizat<strong>io</strong>n to other significant antibodies,<br />

frequently encountered in SCD DHTR, or to significant<br />

auto antibodies. In case of such a demonstrat<strong>io</strong>n,<br />

it could be advice in some cases to consider variants<br />

in the choice of the units. Studies are needed to<br />

exp<strong>lo</strong>re these hypotheses. In this prospect, molecular<br />

b<strong>io</strong><strong>lo</strong>gists, immuno<strong>lo</strong>gists, and sero<strong>lo</strong>gists have to work<br />

together. With the deve<strong>lo</strong>pment of costly procedures to<br />

type variants, it becomes a real issue to determine the<br />

exact relevance of variants in the transfus<strong>io</strong>n of SCD<br />

patients.<br />

References<br />

1. Ohene-Frempong K. Indicat<strong>io</strong>ns for red cell transfus<strong>io</strong>n in sickle<br />

cell disease. Semin Hematol. 2001 Jan;38(1 Suppl 1):5-13.<br />

2. Moreira Jun<strong>io</strong>r G, Bordin JO, Kuroda A, Kerbauy J. Red b<strong>lo</strong>od<br />

cell al<strong>lo</strong>immunizat<strong>io</strong>n in sickle cell disease: the influence of<br />

racial and antigenic pattern differences between donors and<br />

recipients in Brazil. Am J Hematol. 1996 Jul;52(3):197-200.<br />

3. Murao M, Viana MB. Risk factors for al<strong>lo</strong>immunizat<strong>io</strong>n by<br />

patients with sickle cell disease. Braz J Med B<strong>io</strong>l Res. 2005<br />

May;38(5):675-82.<br />

4. Vichinsky EP. Current issues with b<strong>lo</strong>od transfus<strong>io</strong>ns in sickle<br />

cell disease. Semin Hematol. 2001 Jan;38(1 Suppl 1):14-22.<br />

5. Meunier N, Rodet M, Bonin P, Chadebech P, Chami B, Lee K,<br />

et al. [Study of 206 transfused sickle cell disease patients:<br />

immunizat<strong>io</strong>n, transfus<strong>io</strong>n safety and red b<strong>lo</strong>od cell supply].<br />

Transfus Clin B<strong>io</strong>l. 2008 Dec;15(6):377-82.<br />

6. Natukunda B, Schonewille H, Ndugwa C, Brand A. Red b<strong>lo</strong>od<br />

cell al<strong>lo</strong>immunizat<strong>io</strong>n in sickle cell disease patients in Uganda.<br />

Transfus<strong>io</strong>n. Jan;50(1):20-5.<br />

7. Vichinsky EP, Luban NL, Wright E, Olivieri N, Driscoll C,<br />

Pege<strong>lo</strong>w CH, et al. Prospective RBC phenotype matching in a<br />

stroke-prevent<strong>io</strong>n trial in sickle cell anemia: a multicenter<br />

transfus<strong>io</strong>n trial. Transfus<strong>io</strong>n. 2001 Sep;41(9):1086-92.<br />

London, United Kingdom, June 9-12, 2011<br />

8. Schonewille H, van de Watering LM, Brand A. Addit<strong>io</strong>nal red<br />

b<strong>lo</strong>od cell al<strong>lo</strong>antibodies after b<strong>lo</strong>od transfus<strong>io</strong>ns in a nonhemato<strong>lo</strong>gic<br />

al<strong>lo</strong>immunized patient cohort: is it time to take<br />

precaut<strong>io</strong>nary measures? Transfus<strong>io</strong>n. 2006 Apr;46(4):630-5.<br />

9. Westhoff CM. Rh complexities: sero<strong>lo</strong>gy and DNA genotyping.<br />

Transfus<strong>io</strong>n. 2007 Jul;47(1 Suppl):17S-22S.<br />

10. Daniels G. Molecular b<strong>lo</strong>od grouping. Vox Sang. 2004 Jul;87<br />

Suppl1:63-6.<br />

11. Hillyer CD, Shaz BH, Winkler AM, Reid M. Integrating molecular<br />

techno<strong>lo</strong>gies for red b<strong>lo</strong>od cell typing and compatibility<br />

testing into b<strong>lo</strong>od centers and transfus<strong>io</strong>n services. Transfus<br />

Med Rev. 2008 Apr;22(2):117-32.<br />

12. Moulds JM. Future of molecular testing for red b<strong>lo</strong>od cell antigens.<br />

Clin Lab Med. Jun;30(2):419-29.<br />

13. Veldhuisen B, van der Schoot CE, de Haas M. B<strong>lo</strong>od group<br />

genotyping: from patient to high-throughput donor screening.<br />

Vox Sang. 2009 Oct;97(3):198-206.<br />

14. Anstee DJ. Red cell genotyping and the future of pretransfus<strong>io</strong>n<br />

testing. B<strong>lo</strong>od. 2009 Jul 9;114(2):248-56.<br />

15. Mouro I, Colin Y, Cherif-Zahar B, Cartron JP, Le Van Kim C.<br />

Molecular genetic basis of the human Rhesus b<strong>lo</strong>od group system.<br />

Nat Genet. 1993 Sep;5(1):62-5.<br />

16. Wagner FF, Flegel WA. RHCE represents the ancestral RH posit<strong>io</strong>n,<br />

while RHD is the duplicated gene. B<strong>lo</strong>od. 2002 Mar 15;<br />

99(6):2272-3.<br />

17. Flegel WA. Molecular genetics of RH and its clinical applicat<strong>io</strong>n.<br />

Transfus Clin B<strong>io</strong>l. 2006 Mar-Apr;13(1-2):4-12.<br />

18. Daniels G, Poole G, Poole J. Partial D and weak D: can they be<br />

distinguished? Transfus Med. 2007 Apr;17(2):145-6.<br />

19. Flegel WA, Curin-Serbec V, Delamaire M, Donvito B, Ikeda H,<br />

Jorgensen J, et al. Sect<strong>io</strong>n 1B: Rh f<strong>lo</strong>w cytometry. Coordinator’s<br />

report. Rhesus index and antigen density: an analysis of the<br />

reproducibility of f<strong>lo</strong>w cytometric determinat<strong>io</strong>n. Transfus<br />

Clin B<strong>io</strong>l. 2002 Jan;9(1):33-42.<br />

20. Flegel WA, von Zabern I, Doescher A, Wagner FF, Strathmann<br />

KP, Geisen C, et al. D variants at the RhD vestibule in the<br />

weak D type 4 and Eurasian D clusters. Transfus<strong>io</strong>n. 2009<br />

Jun;49(6):1059-69.<br />

21. Wagner FF, Frohmajer A, Ladewig B, Eicher NI, Lonicer CB,<br />

Muller TH, et al. Weak D alleles express distinct phenotypes.<br />

B<strong>lo</strong>od. 2000 Apr 15;95(8):2699-708.<br />

22. Colin Y, Cherif-Zahar B, Le Van Kim C, Raynal V, Van Huffel<br />

V, Cartron JP. Genetic basis of the RhD-positive and RhD-negative<br />

b<strong>lo</strong>od group polymorphism as determined by Southern<br />

analysis. B<strong>lo</strong>od. 1991 Nov 15;78(10):2747-52.<br />

23. Singleton BK, Green CA, Avent ND, Martin PG, Smart E,<br />

Daka A, et al. The presence of an RHD pseudogene containing<br />

a 37 base pair duplicat<strong>io</strong>n and a nonsense mutat<strong>io</strong>n in africans<br />

with the Rh D-negative b<strong>lo</strong>od group phenotype. B<strong>lo</strong>od. 2000<br />

Jan 1;95(1):12-8.<br />

24. Faas BH, Beckers EA, Wildoer P, Ligthart PC, Overbeeke MA,<br />

Zondervan HA, et al. Molecular background of VS and weak<br />

C express<strong>io</strong>n in blacks. Transfus<strong>io</strong>n. 1997 Jan;37(1):38-44.<br />

25. Westhoff CM, Vege S, Halter-Hipsky C, Whorley T, Hue-Roye<br />

K, Lomas-Francis C, et al. DIIIa and DIII Type 5 are encoded by<br />

the same allele and are associated with altered RHCE*ce alleles:<br />

clinical implicat<strong>io</strong>ns. Transfus<strong>io</strong>n. Jun;50(6):1303-11.<br />

26. Wagner FF, Ladewig B, Angert KS, Heymann GA, Eicher NI,<br />

Flegel WA. The DAU allele cluster of the RHD gene. B<strong>lo</strong>od.<br />

2002 Jul 1;100(1):306-11.<br />

27. Flegel WA. How I manage donors and patients with a weak D<br />

phenotype. Curr Opin Hematol. 2006 Nov;13(6):476-83.<br />

28. Wagner FF, Moulds JM, Tounkara A, Kouriba B, Flegel WA.<br />

RHD allele distribut<strong>io</strong>n in Africans of Mali. BMC Genet. 2003<br />

Sep 24;4:14.<br />

29. Hendrickson JE, Chadwick TE, Roback JD, Hillyer CD,<br />

Zimring JC. Inflammat<strong>io</strong>n enhances consumpt<strong>io</strong>n and presentat<strong>io</strong>n<br />

of transfused RBC antigens by dendritic cells. B<strong>lo</strong>od.<br />

2007 Oct 1;110(7):2736-43.<br />

30. Hemker MB, Ligthart PC, Berger L, van Rhenen DJ, van der<br />

Schoot CE, Wijk PA. DAR, a new RhD variant involving exons<br />

4, 5, and 7, often in linkage with ceAR, a new Rhce variant frequently<br />

found in African blacks. B<strong>lo</strong>od. 1999 Dec 15;94(12):<br />

4337-42.<br />

31. Castilho L, R<strong>io</strong>s M, Rodrigues A, Pellegrino J, Jr., Saad ST, Costa<br />

FF. High frequency of partial DIIIa and DAR alleles found in<br />

sickle cell disease patients suggests increased risk of al<strong>lo</strong>immunizat<strong>io</strong>n<br />

to RhD. Transfus Med. 2005 Feb;15(1):49-55.<br />

32. Noizat-Pirenne F, Lee K, Pennec PY, Simon P, Kazup P, Bachir<br />

D, et al. Rare RHCE phenotypes in black individuals of Afro-<br />

Caribbean origin: identificat<strong>io</strong>n and transfus<strong>io</strong>n safety. B<strong>lo</strong>od.<br />

2002 Dec 1;100(12):4223-31.<br />

33. Hipsky CH, Lomas-Francis C, Fuchisawa A, Reid ME. RHCE*ceAR<br />

encodes a partial c (RH4) antigen. Immunohemato<strong>lo</strong>gy. 26(2):57-9.<br />

Hemato<strong>lo</strong>gy Educat<strong>io</strong>n: the educat<strong>io</strong>n programme for the annual congress of the <strong>European</strong> Hemato<strong>lo</strong>gy Associat<strong>io</strong>n | 2011; 5(1) | 379 |

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!