31.01.2013 Views

the Expedition ARKTIS-XIX/4 of the research vessel POLARSTERN ...

the Expedition ARKTIS-XIX/4 of the research vessel POLARSTERN ...

the Expedition ARKTIS-XIX/4 of the research vessel POLARSTERN ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Methods<br />

Cosmic ray particles entering <strong>the</strong> earth’s atmosphere produce a shower <strong>of</strong> secondary<br />

particles (e. g. neutrons, protons and muons). Those particles that reach <strong>the</strong><br />

terrestrial surface can produce terrestrial cosmogenic nuclides (TCN) in <strong>the</strong><br />

uppermost tens <strong>of</strong> cm in a rock. Here TCN is referred to <strong>the</strong> six nuclides that are<br />

most commonly used in geological applications ( 3 He, 10 Be, 14 C, 21 Ne, 26 Al and 36 Cl).<br />

The production takes place in-situ in minerals, from which quartz is most commonly<br />

used for analyses. Its simple chemical composition (SiO2), resistance to erosional<br />

processes and its abundance in many different lithologies makes it an ideal target<br />

mineral for <strong>the</strong> production <strong>of</strong> TCN. The concentration <strong>of</strong> <strong>the</strong>se nuclides in a rock is<br />

time dependent and can <strong>the</strong>refore be used to measure <strong>the</strong> time interval <strong>of</strong> exposure<br />

to cosmic radiation. If assumed that <strong>the</strong> sampled surface <strong>of</strong> a rock is related to a<br />

geological process, surface exposure dating yield an absolute timing <strong>of</strong> <strong>the</strong> event.<br />

Depending on <strong>the</strong> nuclide analysed <strong>the</strong> method has a time range from millions <strong>of</strong><br />

years down to a few thousand years.<br />

sample no. latitude longitude alt. (m a.s.l.) size<br />

Store Koldewey<br />

001 N76°06’37.0’’ W018°34’34.0’’ 630 0.7 x 1 x 1<br />

002 N76°06’17.0’’ W018°35’00.3’’ 214 1 x 2 x 3<br />

003 N76°04’02.8’’ W018°35’21.7’’ 51 0.7x 2 x 1.5<br />

004 N76°05’07.7’’ W018°38’30.9’’ 93 0.6 x 1 x 0.5<br />

005 N76°10’32.6’’ W018°40’37.5’’ 617 1.5 x 2 x 3<br />

006 N76°07’43.7’’ W018°39’35.5’’ 198 bedrock<br />

007 N76°23’01.9’’ W018°57’07.4’’ 686 bedrock<br />

008 N76°23’20.9’’ W018°51’20.6’’ 568 1 x 3 x 4<br />

009 569 1.2 x 2 x 3<br />

010 N76°15’14.4’’ W018°45’08.8’’ 704 bedrock<br />

011 N76°15’35.4’’ W018°44’52.4’’ 652 0.5 x 1.5 x 2<br />

Geographical Society Ø<br />

012 N72°45’07.3’’ W021°54’45.6’’<br />

013 N72°53’26.7’’ W021°54’25.3’’ 108 0.12 x 0.3 x 0.5<br />

014 N72°53’10.6’’ W021°54’46.1’’ 127 small<br />

Tab. 6.5-1: Rock samples from Store Koldewey and Geographical Society Ø<br />

Fig. 6.5-1: Rock<br />

sampling on<br />

Geographical<br />

Society Ø.<br />

69

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!