06.02.2013 Views

Underwater Robots - Gianluca Antonelli.pdf

Underwater Robots - Gianluca Antonelli.pdf

Underwater Robots - Gianluca Antonelli.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Let us consider the scalar function<br />

V = 1<br />

2 s T M ( q ) s + 1<br />

2 ˜ θ T K θ ˜ θ +<br />

+ 1<br />

⎡ ⎤ T ⎡<br />

˜η 1<br />

⎣ ˜z ⎦<br />

2<br />

˜q<br />

⎣ k p I 3 O 3 × 4 O 3 × n<br />

O 4 × 3 2 k o I 4 O 4 × n<br />

O n × 3 O n × 4 K q<br />

⎤ ⎡<br />

⎦ ⎣<br />

7.7 Adaptive Control 159<br />

⎤<br />

˜η 1<br />

˜z ⎦ (7.27)<br />

˜q<br />

where ˜z = [1 0 T ] T − z = [1 − ˜η − ˜ε T ] T . V ≥ 0in view of positive<br />

definiteness of M ( q ), K θ , k p , k o and K q .<br />

Differentiating V with respect to time yields<br />

˙V = 1<br />

2 s T ˙ Ms+ s T M ˙s + ˜ θ T K θ ˙˜ θ +<br />

+ k p ˜η T 1 R I B ˜ν 1 − 2 k o ˜z T J k,oq( z ) ˜ν 2 + ˜q T K q ˙˜q . (7.28)<br />

Observing that, in view of (7.25) and (7.26) it is<br />

˜ν 1 = s p − λ p R B I ˜η 1 , (7.29)<br />

˜ν 2 = s o − λ o ˜ε , (7.30)<br />

˙˜q = s q − Λ q ˜q , (7.31)<br />

and taking into account (2.71), (2.16), (7.29)–(7.31), and the skew-symmetry<br />

of ˙ M − 2 C ,(7.28) can be rewritten as<br />

˙V = − s T Ds − ˜ θ T K θ ˙ ˆ θ + s T [ M ˙<br />

ζ r − Bu + C ( ζ ) ζ r + D ( ζ ) ζ r + g ]+<br />

+ k p ˜η T 1 R I B s p − k p λ p ˜η T 1 ˜η 1 + k o ˜ε T s o − λ o k o ˜ε T ˜ε +<br />

˜q T K q s q − ˜q T K q Λ q ˜q (7.32)<br />

where ˙˜ ˙<br />

θ = − ˆθ was assumed, i.e., the dynamic parameters are constant or<br />

slowly varying.<br />

Exploiting (2.73), (7.32) can be rewritten incompact form:<br />

⎡<br />

˙V = − ⎣<br />

˜η 1<br />

˜ε<br />

˜q<br />

⎤<br />

⎦<br />

T ⎡<br />

⎣ k p λ p I 3 O 3 × 3 O 3 × n<br />

O 3 × 3 k o λ o I 3 O 3 × n<br />

O n × 3 O n × 3 K q Λ q<br />

�<br />

T<br />

+ s Φ ( q , R B I , ζ , ζ r , ˙ ζ r ) θ − Bu + K P ˜y<br />

⎤ ⎡<br />

⎦ ⎣<br />

�<br />

˜η 1<br />

˜ε<br />

˜q<br />

⎤<br />

⎦ +<br />

− s T Ds − ˜ θ T K θ ˙ ˆ θ . (7.33)<br />

Plugging the control law (7.22)–(7.23) into (7.33), one finally obtains:<br />

˙V = − ˜y T K � ˜y − s T ( K D + D ) s<br />

that is negative semi-definite over the state space { ˜y , s , ˜ θ } .<br />

It is now possible to prove the system stability inaLyapunov-Like sense<br />

using the Barbălat’s Lemma. Since V is lower bounded, ˙ V ( ˜y , s , ˜ θ ) ≤ 0and<br />

˙V ( ˜y , s , ˜ θ )isuniformly continuous then ˙ V ( ˜y , s , ˜ θ ) → 0as t → ∞.Thus<br />

˜y , s → 0 as t →∞.However itisnot possible to prove asymptotic stability<br />

of the state, since ˜ θ is only guaranteed to be bounded.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!