06.02.2013 Views

Underwater Robots - Gianluca Antonelli.pdf

Underwater Robots - Gianluca Antonelli.pdf

Underwater Robots - Gianluca Antonelli.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

7.9 Virtual Decomposition Based Control 187<br />

that is positive definite in view of positive definitiveness of V i ,i=0,...,n.<br />

Its time derivative issimply given by the time derivatives of all the scalar<br />

functions:<br />

˙V =<br />

n�<br />

i =0<br />

�<br />

− s i T<br />

i ( K v,i + D i ) s i i + s i �<br />

T i<br />

˜h<br />

i t,i ,<br />

where the last term is null. In fact, let us consider the two equations:<br />

h i t,i = h i i − U i i +1<br />

i +1h i +1 ,<br />

T<br />

i +1 i<br />

ν i +1 = U<br />

i +1ν i i +1<br />

i +˙q i +1z i<br />

it is possible to observe that the same relationships hold for ˜ h i<br />

t,i and s i i :<br />

˜h i<br />

t,i = ˜ h i<br />

i − U i i +1 ˜ i +1<br />

h i +1 ,<br />

T<br />

i +1 i<br />

s i +1 = U<br />

i +1s i i +1<br />

i + s q,i +1z i<br />

.<br />

where ˜ h i<br />

i = h i c,i − h i i .Recalling that τ = J T w h e ,the last term of the time<br />

derivative ofthe Lyapunov function candidate is then given by:<br />

n�<br />

n�<br />

i =0<br />

s i T i<br />

˜h<br />

i t,i = s 0 T 0<br />

˜h<br />

0 0 +<br />

= s 0 T 0<br />

˜h<br />

0 0 +<br />

= s 0 T 0<br />

˜h<br />

0<br />

i =1<br />

s q,i z i T i<br />

˜h<br />

i − 1 i<br />

n�<br />

s q,i ˜τ q,i<br />

i =1<br />

0 + s T q ˜τ q<br />

� �<br />

0 T<br />

s 0 = J<br />

s q<br />

T w ˜ h e<br />

=0 (7.75)<br />

since, in absence of contact at the end effector, ˜ h e = 0 .Tounderstand the<br />

first equality let rewrite the first term for two consecutive links:<br />

s i T i<br />

˜h<br />

i<br />

t,i + s<br />

i +1T<br />

i +1<br />

˜h<br />

i +1<br />

t,i+1 =(U<br />

i − 1 T i − 1<br />

i s i − 1 + s q,i z i i − 1 ) T i<br />

h ˜<br />

i − s i T i i +1<br />

i U ˜<br />

i +1h i +1 +<br />

( U i T i i +1<br />

i +1 s i + s q,i +1z i ) T i +1<br />

h ˜ i +1T<br />

i +1<br />

i +1 − s i +1 U i +2 ˜ i +2<br />

h i +2<br />

=(U<br />

i − 1 T i − 1<br />

i s i − 1 + s q,i z i i − 1 ) T i<br />

h ˜<br />

i +<br />

( s q,i +1z<br />

i +1<br />

i ) T i +1<br />

h ˜ i +1T<br />

i +1<br />

i +1 − s i +1 U i +2 ˜ i +2<br />

h i +2,<br />

that, considering that the first and the last term are null for the first and the<br />

last rigid body respectively, gives the relation required in (7.75).<br />

It is now possible to prove the system stability inaLyapunov-Like sense<br />

using the Barbălat’s Lemma. Since<br />

• V ( s 0 0 ,...,s n n , ˜ θ 0 ,..., ˜ θ n )islower bounded;

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!