06.02.2013 Views

Underwater Robots - Gianluca Antonelli.pdf

Underwater Robots - Gianluca Antonelli.pdf

Underwater Robots - Gianluca Antonelli.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

38 2. Modelling of <strong>Underwater</strong> <strong>Robots</strong><br />

Knowing ν 1 , ν 2 , ˙ν 1 , ˙ν 2 ,(vehicle linear and angular velocities and acceleration<br />

in body fixed frame), ˙q , ¨q ,(joint velocities and acceleration) it is<br />

possible to calculate, for every link, the following variables:<br />

ω i i ,angular velocity ofthe frame i ,<br />

˙ω i i ,angular acceleration ofthe frame i ,<br />

v i i ,linear velocity ofthe origin ofthe frame i ,<br />

v i ic ,linear velocity ofthe center of mass of link i ,<br />

a i i ,linear acceleration ofthe origin offrame i ,<br />

by resorting to the following relationships:<br />

ω i i = R i � i − 1<br />

i − 1 ω i − 1 +˙q �<br />

i z i − 1<br />

˙ω<br />

(2.59)<br />

i i = R i � i − 1 i − 1<br />

i − 1 ˙ω i − 1 + ω i − 1 × ˙q �<br />

i z i − 1 +¨q i z i − 1<br />

(2.60)<br />

v i i = R i i − 1<br />

i − 1 v i − 1 + ω i i × r i i − 1 ,i<br />

(2.61)<br />

v i ic = R i i − 1<br />

i − 1 v i − 1 + ω i i × r i i − 1 ,c<br />

(2.62)<br />

a i i = R i i − 1<br />

i − 1 a i − 1 + ˙ω i i × r i i − 1 ,i + ω i i × ( ω i i × r i i − 1 ,i) (2.63)<br />

where z i is the versor offrame i , r i i − 1 ,i<br />

of frame i − 1toward the origin offrame i expressed in frame i .<br />

Since the task of UVMS missions is usually force/position control of the<br />

end effector frame, it is necessary to consider the position of the end effector<br />

in the inertial frame, η ee1 ∈ IR 3 ;this is afunction ofthe system configuration,<br />

i.e., η ee1 ( η 1 , R B I , q ). The vector ˙η ee1 ∈ IR 3 is the corresponding time<br />

derivative.<br />

Let us further define η ee2 ∈ IR 3 as the orientation of the end effector in<br />

the inertial frame expressed by Euler angles: also η ee2 is afunction ofthe<br />

system configuration, i.e., η ee2 ( R B I , q ). Again, the vector ˙η ee2 ∈ IR 3 is the<br />

is the constant vector from the origin<br />

corresponding time derivative.<br />

The relation between the end-effector posture η ee =[η T ee1 η T ee2 ] T and<br />

the system configuration can be expressed by the following nonlinear equation:<br />

η ee = k ( η , q ) . (2.64)<br />

The vectors ˙η ee1 and ˙η ee2 are related to the body-fixed velocities ν ee via<br />

relations analogous to(2.1) and (2.2), i.e.,<br />

ν ee1 = R n I ˙η ee1<br />

ν ee2 = J k,o ( η ee2 ) ˙η ee2<br />

(2.65)<br />

(2.66)<br />

where R n I is the rotation matrix from the inertial frame to the end-effector<br />

frame (i.e., frame n )and J k,o is the matrix defined as in (2.3) with the use

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!