22.03.2013 Views

et al.

et al.

et al.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

δD (‰ V-SMOW)<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

0 -200<br />

0<br />

0 100 200 300 400 500 600 700 800 900 1000 0 200 400 600 800 1000 1200<br />

Temperature (°C)<br />

Temperature (°C)<br />

Fig. 8. Plots of dD versus temperature, showing data for the NWA 7034 bulk sample during stepped heating. The horizont<strong>al</strong> solid lines represent the<br />

temperature interv<strong>al</strong>s; circles are mid-interv<strong>al</strong> temperatures. The two plots represent two <strong>al</strong>iquots of the NWA 7034 sample.<br />

in origin. Its major, minor, trace, and isotopic<br />

chemistry is inconsistent with originating from<br />

Earth, the Moon, Venus, or Mercury, and it is<br />

most similar to rocks from Mars. Non<strong>et</strong>heless,<br />

NWA 7034 is uniquely different from any other<br />

known martian m<strong>et</strong>eorite, as it is the most geochemic<strong>al</strong>ly<br />

enriched rock from Mars found to<br />

date. Moreover, the bulk chemistry of NWA 7034<br />

is strikingly similar to recently collected orbit<strong>al</strong><br />

and lander data collected at the martian surface,<br />

<strong>al</strong>lowing for a direct link b<strong>et</strong>ween a martian m<strong>et</strong>eorite<br />

and orbit<strong>al</strong> and lander spacecraft data from<br />

Mars. NWA 7034 is <strong>al</strong>so distinct from the SNC<br />

m<strong>et</strong>eorites because it has higher bulk d 18 Oand<br />

D 17 O, suggesting the existence of multiple oxygen<br />

isotopic reservoirs within the lithologic portion<br />

of Mars.<br />

References and Notes<br />

1. A. H. Treiman, J. D. Gleason, D. D. Bogard, Plan<strong>et</strong>. Space<br />

Sci. 48, 1213 (2000).<br />

2. H. Y. McSween, T. L. Grove, J. Wyatt, J. Geophys. Res.<br />

Plan<strong>et</strong>s 108, 5135 (2003).<br />

3. L. E. Nyquist <strong>et</strong> <strong>al</strong>., in Chronology and Evolution of Mars,<br />

R. K<strong>al</strong>lenbach, J. Geiss, W. K. Hartmann, Eds. (Springer,<br />

New York, 2001), p. 105.<br />

4. H. Y. McSween Jr., G. J. Taylor, M. B. Wyatt, Science 324,<br />

736 (2009).<br />

5. R. Gellert <strong>et</strong> <strong>al</strong>., J. Geophys. Res. Plan<strong>et</strong>s 111, E02S05<br />

(2006).<br />

6. D. W. Ming <strong>et</strong> <strong>al</strong>., J. Geophys. Res. Plan<strong>et</strong>s 113, E12S39<br />

(2008).<br />

7. W. V. Boynton <strong>et</strong> <strong>al</strong>., J. Geophys. Res. Plan<strong>et</strong>s 112,<br />

E12S99 (2007).<br />

8. See supplementary materi<strong>al</strong>s on Science Online.<br />

9. S. P. Wright, P. R. Christensen, T. G. Sharp, J. Geophys.<br />

Res. Plan<strong>et</strong>s 116, E09006 (2011).<br />

10. J. J. Papike, J. M. Karner, C. K. Shearer, P. V. Burger,<br />

Geochim. Cosmochim. Acta 73, 7443 (2009).<br />

11. F. M. McCubbin, H. Nekvasil, Am. Miner<strong>al</strong>. 93, 676<br />

(2008).<br />

12. J. Filiberto, Geochim. Cosmochim. Acta 72, 690<br />

(2008).<br />

13. H. Nekvasil, F. M. McCubbin, A. Harrington, S. Elardo,<br />

D. H. Lindsley, M<strong>et</strong>eorit. Plan<strong>et</strong>. Sci. 44, 853 (2009).<br />

14. F. M. McCubbin, H. Nekvasil, A. D. Harrington,<br />

S. M. Elardo, D. H. Lindsley, J. Geophys. Res. Plan<strong>et</strong>s 113,<br />

E11013 (2008).<br />

15. J. Zipfel <strong>et</strong> <strong>al</strong>., M<strong>et</strong>eorit. Plan<strong>et</strong>. Sci. 46, 1 (2011).<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

% H 2 O of tot<strong>al</strong> evolved water<br />

δD (‰ V-SMOW)<br />

400<br />

300<br />

200<br />

100<br />

16. H. Chennaoui Aoudjehane <strong>et</strong> <strong>al</strong>., Science 338, 785<br />

(2012).<br />

17. M. Wadwa, G. Crozaz, J.-A. Barrat, Antarct. M<strong>et</strong>eorite Res.<br />

17, 97 (2004).<br />

18. J. M. Day, L. A. Taylor, C. Floss, H. Y. Mcsween Jr.,<br />

M<strong>et</strong>eorit. Plan<strong>et</strong>. Sci. 41, 581 (2006).<br />

19. W. K. Hartmann, G. Neukum, in Chronology and<br />

Evolution of Mars, R. K<strong>al</strong>lenbach, J. Geiss,<br />

W. K. Hartmann, Eds. (Springer, New York, 2001),<br />

p. 165–194.<br />

20. L. E. Borg, D. S. Draper, M<strong>et</strong>eorit. Plan<strong>et</strong>. Sci. 38, 1713<br />

(2003).<br />

21. L. E. Borg, L. E. Nyquist, L. A. Taylor, H. Wiesmann,<br />

C.-Y. Shih, Geochim. Cosmochim. Acta 61, 4915<br />

(1997).<br />

22. L. E. Borg, L. E. Nyquist, H. Wiesmann, Y. Reese,<br />

Geochim. Cosmochim. Acta 66, 2037 (2002).<br />

23. L. E. Borg, L. E. Nyquist, H. Wiesmann, C.-Y. Shih,<br />

Y. Reese, Geochim. Cosmochim. Acta 67, 3519 (2003).<br />

24. C. K. Shearer <strong>et</strong> <strong>al</strong>., Am. Miner<strong>al</strong>. 96, 1418 (2011).<br />

25. C. B. Till, T. L. Grove, M. J. Krawczynski, J. Geophys. Res.<br />

117, B06206 (2012).<br />

26. M. D. Norman, M<strong>et</strong>eorit. Plan<strong>et</strong>. Sci. 34, 439 (1999).<br />

27. C. D. K. Herd, L. E. Borg, J. H. Jones, J. J. Papike,<br />

Geochim. Cosmochim. Acta 66, 2025 (2002).<br />

28. A. B. Sarbadhikari, J. M. D. Day, Y. Liu, D. Rumble III,<br />

L. A. Taylor, Geochim. Cosmochim. Acta 73, 2190 (2009).<br />

29. A. B. Sarbadhikari, C. A. Goodrich, Y. Liu, J. M. D. Day,<br />

L. A. Taylor, Geochim. Cosmochim. Acta 75, 6803<br />

(2011).<br />

30. C. D. K. Herd, M<strong>et</strong>eorit. Plan<strong>et</strong>. Sci. 38, 1793 (2003).<br />

31. A. Steele <strong>et</strong> <strong>al</strong>., Science 337, 212 (2012).<br />

32. M. M. Grady, A. B. Verchovsky, I. P. Wright, Int. J.<br />

Astrobiol. 3, 117 (2004).<br />

33. R. N. Clayton, T. K. Mayeda, Earth Plan<strong>et</strong>. Sci. L<strong>et</strong>t. 62,<br />

1 (1983).<br />

34. I. A. Franchi, I. P. Wright, A. S. Sexton, C. T. Pillinger,<br />

M<strong>et</strong>eorit. Plan<strong>et</strong>. Sci. 34, 657 (1999).<br />

35. D. W. Mittlefehldt, R. N. Clayton, M. J. Drake, K. Righter,<br />

Rev. Miner<strong>al</strong>. Geochem. 68, 399 (2008).<br />

36. D. Rumble <strong>et</strong> <strong>al</strong>., Proc. 40th Lunar Plan<strong>et</strong>. Sci. Conf. 40,<br />

2293 (2009).<br />

37. F. M. McCubbin, M. A. Riner, K. E. Vander Kaaden,<br />

L. K. Burkemper, Geophys. Res. L<strong>et</strong>t. 39, L09202<br />

(2012).<br />

38. M. A. Riner, F. M. McCubbin, P. G. Lucey, G. J. Taylor,<br />

J. J. Gillis-Davis, Icarus 209, 301 (2010).<br />

39. L. R. Nittler <strong>et</strong> <strong>al</strong>., Science 333, 1847 (2011).<br />

40. K. Lodders, B. Fegley, The Plan<strong>et</strong>ary Scientist’s<br />

Companion (Oxford Univ. Press, Oxford, 1998).<br />

41. H. R. Karlsson, R. N. Clayton, E. K. Gibson Jr.,<br />

T. K. Mayeda, Science 255, 1409 (1992).<br />

42. J. Farquhar, M. H. Thiemens, T. Jackson, Science 280,<br />

1580 (1998).<br />

0<br />

-100<br />

RESEARCH ARTICLES<br />

43. C. S. Romanek <strong>et</strong> <strong>al</strong>., M<strong>et</strong>eorit. Plan<strong>et</strong>. Sci. 33, 775<br />

(1998).<br />

44. E. D. Young, R. D. Ash, P. England, D. Rumble 3rd,<br />

Science 286, 1331 (1999).<br />

45. Y. L. Yung, W. B. Demore, Photochemistry of Plan<strong>et</strong>ary<br />

Atmospheres (Oxford Univ. Press, Oxford, 1999).<br />

46. J. Farquhar, M. H. Thiemens, J. Geophys. Res. Plan<strong>et</strong>s<br />

105, 11991 (2000).<br />

47. C. C. Reese, V. S. Solomatov, Icarus 184, 102<br />

(2006).<br />

48. F. Nimmo, S. D. Hart, D. G. Korycansky, C. B. Agnor,<br />

Nature 453, 1220 (2008).<br />

49. Z. D. Sharp, V. Atudorei, T. Durakiewicz, Chem. Geol.<br />

178, 197 (2001).<br />

50. L. A. Leshin, S. Epstein, E. M. Stolper, Geochim.<br />

Cosmochim. Acta 60, 2635 (1996).<br />

51. L. Borg, M. J. Drake, J. Geophys. Res. Plan<strong>et</strong>s 110,<br />

E12S03 (2005).<br />

52. B. L. Ehlmann <strong>et</strong> <strong>al</strong>., Nature 479, 53 (2011).<br />

53. F. M. McCubbin <strong>et</strong> <strong>al</strong>., Earth Plan<strong>et</strong>. Sci. L<strong>et</strong>t. 292, 132<br />

(2010).<br />

54. G. A. Snyder, L. A. Taylor, C. R. Ne<strong>al</strong>, Geochim.<br />

Cosmochim. Acta 56, 3809 (1992).<br />

55. G. A. Snyder, D.-C. Lee, L. A. Taylor, A. N. H<strong>al</strong>liday,<br />

E. A. Jerde, Geochim. Cosmochim. Acta 58, 4795<br />

(1994).<br />

56. P. H. Warren, J. T. Wasson, Rev. Geophys. Space Phys. 17,<br />

73 (1979).<br />

Acknowledgments: We thank J. Piatek for acquiring the<br />

NWA 7034 specimen and for his generous donation to the<br />

UNM M<strong>et</strong>eorite Museum, which has enabled this research<br />

and sample <strong>al</strong>locations for future research on NWA 7034.<br />

We <strong>al</strong>so thank M. Spilde, V. Atudorei, and J. Connolly at the<br />

University of New Mexico for assistance with data collection.<br />

Supported by NASA Cosmochemistry Program grants<br />

NNX11AH16G (C.B.A.) and NNX11AG76G (F.M.M.). S.M.E.<br />

acknowledges support from the New Mexico Space Grant<br />

Consortium, NASA Earth and Space Science Fellowship<br />

NNX12AO15H, and NASA Cosmochemistry grant NNX10AI77G<br />

to Charles K. Shearer. M.H.T. and R.S. acknowledge NSF<br />

award ATM0960594, which <strong>al</strong>lowed the development of an<br />

an<strong>al</strong>ytic<strong>al</strong> technique to measure oxygen triple isotopic<br />

composition of sm<strong>al</strong>l (

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!