22.03.2013 Views

et al.

et al.

et al.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

REPORTS<br />

794<br />

matrices for this graph at momenta –p/4 and<br />

–p/2 are<br />

Sswitchð−p=4Þ ¼<br />

0 0 e−ip=4 0 −1 0<br />

e−ip=4 0<br />

@<br />

1<br />

A<br />

0 0<br />

0<br />

1<br />

Sswitchð−p=2Þ ¼@<br />

0<br />

0<br />

0<br />

1<br />

0<br />

−1 A ð5Þ<br />

0 −1 0<br />

The momentum switch has perfect transmission<br />

b<strong>et</strong>ween vertices 1 and 3 at momentum –p/4 and<br />

perfect transmission b<strong>et</strong>ween vertices 2 and 3 at<br />

momentum –p/2. Thus, the path a particle follows<br />

through the switch depends on its momentum:<br />

A particle with momentum –p/2 follows the<br />

double line in Fig. 3A, whereas a particle with<br />

momentum –p/4 follows the single line.<br />

The graph used to implement the Cq gate is<br />

shown in Fig. 3B [see section S4 of (32) forthe<br />

numbers of vertices on each of the paths]. To see<br />

why this graph implements a Cq gate, consider<br />

the movement of two particles as they pass<br />

through the graph. If either particle begins in the<br />

state j0in〉, it travels <strong>al</strong>ong a path to the output<br />

without interacting with the second particle. When<br />

either particle begins in the state j1in〉,itisrouted<br />

onto the vertic<strong>al</strong> path as it passes through the first<br />

momentum switch and is routed to the right as it<br />

passes through the second switch. If both particles<br />

begin in the state j1in〉, they interact on the<br />

vertic<strong>al</strong> path and the wave function acquires a<br />

phase e iq .<br />

To implement a circuit, the subgraphs representing<br />

circuit elements are connected by paths.<br />

Figure 4 depicts a graph corresponding to a simple<br />

two-qubit computation. Timing is important:<br />

Wave pack<strong>et</strong>s must me<strong>et</strong> on the vertic<strong>al</strong> paths for<br />

interactions to occur. We achieve this by choosing<br />

the numbers of vertices on each of the segments<br />

in the graph appropriately, taking into account<br />

the different propagation speeds of the two wave<br />

pack<strong>et</strong>s [see section S4 of (32)]. In section S3.1<br />

of (32), we present a refinement of our scheme<br />

using planar graphs with maximum degree four.<br />

By an<strong>al</strong>yzing the full (n +1)–particle interacting<br />

many-body system, we prove that our <strong>al</strong>gorithm<br />

performs the desired quantum computation<br />

up to an error term that can be made arbitrarily<br />

sm<strong>al</strong>l (32). Our an<strong>al</strong>ysis goes beyond the scattering<br />

theory discussion presented above; we take<br />

into account the fact that both the wave pack<strong>et</strong>s<br />

and the graphs are finite. Specific<strong>al</strong>ly, we prove<br />

that by choosing the size of the wave pack<strong>et</strong>s, the<br />

number of vertices in the graph, and the tot<strong>al</strong><br />

evolution time to be polynomi<strong>al</strong> functions of both<br />

n and g, the error in simulating an n-qubit, g-gate<br />

quantum circuit is bounded above by an arbitrarily<br />

sm<strong>al</strong>l constant [section S5 of (32)]. For<br />

example, for the Bose-Hubbard model and for<br />

the nearest-neighbor interaction model, we prove<br />

that the error can be made arbitrarily sm<strong>al</strong>l by<br />

choosing the size of the wave pack<strong>et</strong>s to be<br />

O(n 12 g 4 ), the tot<strong>al</strong> number of vertices in the<br />

graphtobeO(n 13 g 5 ), and the tot<strong>al</strong> evolution time<br />

to be O(n 12 g 5 ). The bounds we prove, <strong>al</strong>though<br />

<strong>al</strong>most certainly not optim<strong>al</strong>, are sufficient to establish<br />

univers<strong>al</strong>ity with only polynomi<strong>al</strong> overhead.<br />

Because it is <strong>al</strong>so possible to efficiently<br />

simulate a multiparticle quantum w<strong>al</strong>k of the type<br />

we consider using a univers<strong>al</strong> quantum computer,<br />

this model exactly captures the power of<br />

quantum computation.<br />

References and Notes<br />

1. E. Farhi, S. Gutmann, Phys. Rev. A 58, 915 (1998).<br />

2. D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani,<br />

“Quantum w<strong>al</strong>ks on graphs,” Proceedings of the 33rd<br />

ACM Symposium on Theory of Computing (2001), pp. 50–59.<br />

3. A. Ambainis, E. Bach, A. Nayak, A. Vishwanath,<br />

J. Watrous, “One-dimension<strong>al</strong> quantum w<strong>al</strong>ks,”<br />

Proceedings of the 33rd ACM Symposium on Theory of<br />

Computing (2001), pp. 37–49.<br />

4. A. M. Childs <strong>et</strong> <strong>al</strong>., “Exponenti<strong>al</strong> <strong>al</strong>gorithmic speedup by<br />

quantum w<strong>al</strong>k,” Proceedings of the 35th ACM Symposium<br />

on Theory of Computing (2003), pp. 59–68.<br />

5. A. Ambainis, SIAM J. Comput. 37, 210 (2007).<br />

6. E. Farhi, J. Goldstone, S. Gutmann, Theory of Computing<br />

4, 169 (2008).<br />

7. A. M. Childs, Phys. Rev. L<strong>et</strong>t. 102, 180501 (2009).<br />

8. B. Do <strong>et</strong> <strong>al</strong>., J. Opt. Soc. Am. B 22, 499 (2005).<br />

9. M. Karski <strong>et</strong> <strong>al</strong>., Science 325, 174 (2009).<br />

10. H. B. Per<strong>et</strong>s <strong>et</strong> <strong>al</strong>., Phys. Rev. L<strong>et</strong>t. 100, 170506 (2008).<br />

11. Y. Bromberg, Y. Lahini, R. Morandotti, Y. Silberberg,<br />

Phys. Rev. L<strong>et</strong>t. 102, 253904 (2009).<br />

12. A. Peruzzo <strong>et</strong> <strong>al</strong>., Science 329, 1500 (2010).<br />

13. J. O. Owens <strong>et</strong> <strong>al</strong>., New J. Phys. 13, 075003 (2011).<br />

14. L. Sansoni <strong>et</strong> <strong>al</strong>., Phys. Rev. L<strong>et</strong>t. 108, 010502 (2012).<br />

15. I. L. Chuang, Y. Yamamoto, Phys. Rev. A 52, 3489 (1995).<br />

16. G. K. Brennen, C. M. Caves, P. S. Jessen, I. H. Deutsch,<br />

Phys. Rev. L<strong>et</strong>t. 82, 1060 (1999).<br />

17. W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, M. Greiner,<br />

Nature 462, 74 (2009).<br />

Photonic Boson Sampling<br />

in a Tunable Circuit<br />

18. A. J. Hoffman <strong>et</strong> <strong>al</strong>., Phys.Rev.L<strong>et</strong>t.107, 053602 (2011).<br />

19. J.K.Gamble,M.Friesen,D.Zhou,R.Joynt,S.N.Coppersmith,<br />

Phys.Rev.A81, 052313 (2010).<br />

20. J. Smith, Electron. Notes Discr<strong>et</strong>e Math. 38, 795 (2011).<br />

21. Y. Omar, N. Paunković, Phys. Rev. A 74, 042304 (2006).<br />

22. P. K. Pathak, G. S. Agarw<strong>al</strong>, Phys. Rev. A 75, 032351 (2007).<br />

23. Y. Lahini <strong>et</strong> <strong>al</strong>., Phys. Rev. A 86, 011603 (2012).<br />

24. A. Schreiber <strong>et</strong> <strong>al</strong>., Science 336, 55 (2012).<br />

25. A. Ahlbrecht <strong>et</strong> <strong>al</strong>., New J. Phys. 14, 073050 (2012).<br />

26. P. P. Rohde, A. Schreiber, M. Štefaňák,I.Jex,C.Silberhorn,<br />

New J. Phys. 13, 013001 (2011).<br />

27. B.M.Terh<strong>al</strong>,D.P.DiVincenzo,Phys.Rev.A65, 032325 (2002).<br />

28. S. Aaronson, A. Arkhipov, “The computation<strong>al</strong> complexity<br />

of linear optics,” Proceedings of the 43rd ACM<br />

Symposium on Theory of Computing (2011), pp. 333–342.<br />

29. R. Ionicioiu, P. Zanardi, Phys. Rev. A 66, 050301 (2002).<br />

30. A. Mizel, D. A. Lidar, M. Mitchell, Phys. Rev. L<strong>et</strong>t. 99,<br />

070502 (2007).<br />

31. A. M. Childs, D Goss<strong>et</strong>, J. Math. Phys. 53, 102207<br />

(2012).<br />

32. Materi<strong>al</strong>s and m<strong>et</strong>hods are available as supplementary<br />

materi<strong>al</strong>s on Science Online.<br />

33. M. V<strong>al</strong>iente, Phys. Rev. A 81, 042102 (2010).<br />

34. B. A. Blumer, M. S. Underwood, D. L. Feder, Phys. Rev. A<br />

84, 062302 (2011).<br />

Acknowledgments: This work was supported in part by<br />

MITACS; Natur<strong>al</strong> Sciences and Engineering Research Council of<br />

Canada; the Ontario Ministry of Research and Innovation; the<br />

Ontario Ministry of Training, Colleges, and Universities; and<br />

the U.S. Army Research Office.<br />

Supplementary Materi<strong>al</strong>s<br />

www.sciencemag.org/cgi/content/full/339/6121/791/DC1<br />

Materi<strong>al</strong>s and M<strong>et</strong>hods<br />

Supplementary Text<br />

Figs. S1 to S10<br />

References<br />

10 September 2012; accepted 17 December 2012<br />

10.1126/science.1229957<br />

Matthew A. Broome, 1,2 * Alessandro Fedrizzi, 1,2 S<strong>al</strong>eh Rahimi-Keshari, 2 Justin Dove, 3<br />

Scott Aaronson, 3 Timothy C. R<strong>al</strong>ph, 2 Andrew G. White 1,2<br />

Quantum computers are unnecessary for exponenti<strong>al</strong>ly efficient computation or simulation if the<br />

Extended Church-Turing thesis is correct. The thesis would be strongly contradicted by physic<strong>al</strong><br />

devices that efficiently perform tasks believed to be intractable for classic<strong>al</strong> computers. Such a task<br />

is boson sampling: sampling the output distributions of n bosons scattered by some passive, linear<br />

unitary process. We tested the centr<strong>al</strong> premise of boson sampling, experiment<strong>al</strong>ly verifying that<br />

three-photon scattering amplitudes are given by the permanents of submatrices generated from a<br />

unitary describing a six-mode integrated optic<strong>al</strong> circuit. We find the protocol to be robust, working<br />

even with the unavoidable effects of photon loss, non-ide<strong>al</strong> sources, and imperfect d<strong>et</strong>ection.<br />

Sc<strong>al</strong>ing this to large numbers of photons should be a much simpler task than building a univers<strong>al</strong><br />

quantum computer.<br />

Amajor motivation for sc<strong>al</strong>able quantum<br />

computing is Shor’s <strong>al</strong>gorithm (1),<br />

which enables the efficient factoring of<br />

large composite numbers into their constituent<br />

primes. The presumed difficulty of this task is the<br />

basis of the majority of today’s public-key encryption<br />

schemes. It may be that sc<strong>al</strong>able quantum<br />

computers are not re<strong>al</strong>istic if, for example,<br />

quantum mechanics breaks down for large numbers<br />

of qubits (2). If, however, quantum com-<br />

15 FEBRUARY 2013 VOL 339 SCIENCE www.sciencemag.org<br />

puters are re<strong>al</strong>istic physic<strong>al</strong> devices, then the<br />

Extended Church-Turing (ECT) thesis—that<br />

any function efficiently computed on a re<strong>al</strong>istic<br />

physic<strong>al</strong> device can be efficiently computed<br />

on a probabilistic Turing machine—means that<br />

a classic<strong>al</strong> efficient factoring <strong>al</strong>gorithm exists.<br />

Such an <strong>al</strong>gorithm, long sought after, would<br />

enable us to break public-key cryptosystems<br />

such as RSA. A third possibility is that the ECT<br />

thesis itself is wrong.<br />

Downloaded from<br />

www.sciencemag.org on February 14, 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!