27.04.2013 Views

Figure I Generalized map of the Wilbur Mining ... - University of Utah

Figure I Generalized map of the Wilbur Mining ... - University of Utah

Figure I Generalized map of the Wilbur Mining ... - University of Utah

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Thompson<br />

T OC<br />

pH<br />

SIO2<br />

Al<br />

Fe<br />

Mn<br />

Ca<br />

Mg<br />

Sr<br />

Ba<br />

Na<br />

K<br />

Ll<br />

NHi|<br />

HCO 3<br />

CO3<br />

so^<br />

Cl<br />

F<br />

Br<br />

I<br />

B<br />

H2S<br />

Na-K-•Ca<br />

Mg corr<br />

SIO2<br />

Na-K-Ca<br />

Adlabatic<br />

Conductive<br />

^Analyses,in mg/L<br />

Table 1. Averaged concentrations for spring and well water<br />

in <strong>the</strong> <strong>Wilbur</strong> mining district'<br />

<strong>Wilbur</strong><br />

Hot Spring<br />

52<br />

7.5<br />

176<br />

1.8<br />

0.17<br />

O.Of<br />

2.5<br />

15<br />

3.6<br />

3.1<br />

8700<br />

^08<br />

11.6<br />

29'*<br />

6900<br />

—<br />

356(H)<br />

9980<br />

2.1<br />

19<br />

12<br />

233<br />

165<br />

236<br />

8it<br />

218<br />

_—_<br />

Jones'<br />

Fountain <strong>of</strong><br />

Life<br />

60<br />

7.7<br />

89<br />

0.35<br />

0.05<br />

2.6<br />

31<br />

1.6<br />

3.0<br />

9880<br />

it 32<br />

10.7<br />

120<br />

57IO<br />

—<br />

71<br />

11,700<br />

3.5<br />

31<br />

23<br />

2H0<br />

232<br />

118<br />

223<br />

to <strong>Wilbur</strong> Hot Springs (see Table 1) <strong>Wilbur</strong> ffl<br />

geo<strong>the</strong>nnal well contains (1) a higher chloride<br />

content (11,100 vs. 10,000 mg/L), (2) a lower<br />

sulfate content (260 vs. 36O mg/L) and (3) a much<br />

lower magnesium content (2 vs. 15 mg/L).<br />

The magnesium corrected Na-K-Ca geo<strong>the</strong>rmometer<br />

(Fournier and Potter, 1978) indicates temperatures<br />

ranging from 10 to 160°C. However, because <strong>the</strong><br />

country rock around <strong>Wilbur</strong> Hot Springs is<br />

principally serpentinite, <strong>the</strong> high magnesium in<br />

<strong>Wilbur</strong> Hot Spring is probably due to serpentine<br />

dissolution. The uncorrected Na-K-Ca (Fournier<br />

and Truesdell, 1973) temperatures, which range<br />

from 220 to 218°C, may be more reasonable.<br />

Water from <strong>Wilbur</strong> ff 1 geo<strong>the</strong>rmal well has a<br />

Na-K-Ca temperature <strong>of</strong> 2IIOC (Table 1) and very<br />

little magnesium; a correction <strong>of</strong> only 1°C is<br />

calculated.<br />

Due to possible silica addition from<br />

serpentine dissolution, severe difficulties are<br />

encountered when using dissolved silica<br />

Blanck's<br />

Spring<br />

12<br />

7.8<br />

121<br />

0.19<br />

0.05<br />

3.5<br />

69<br />

1.1<br />

1.5<br />

7220<br />

360<br />

6.9<br />

125<br />

6390<br />

—<br />

180<br />

8050<br />

2.3<br />

21<br />

18<br />

150<br />

730<br />

232<br />

16<br />

198<br />

——<br />

Elgin Mine<br />

Springs<br />

61<br />

198<br />

0.17<br />

1.0<br />

1.8<br />

28<br />

3.7<br />

9330<br />

510<br />

11<br />

213<br />

7270<br />

—<br />

86<br />

11,550<br />

3.2<br />

30<br />

25<br />

210<br />

170<br />

211<br />

118<br />

208<br />

— •'—<br />

<strong>Wilbur</strong> fi<br />

Geo<strong>the</strong>rmal<br />

well<br />

110<br />

8.8<br />

133<br />

— 1<br />

2<br />

10,000<br />

110<br />

—<br />

275<br />

5170<br />

1170<br />

263<br />

11,100<br />

16<br />

—<br />

• —<br />

118<br />

211<br />

213<br />

201<br />

Meteoric<br />

water<br />

19.5<br />

6.8<br />

21<br />

— 3.1<br />

182<br />

—<br />

—<br />

132<br />

1.1<br />

0.16<br />

—<br />

1020<br />

0<br />

185<br />

83<br />

.37<br />

—<br />

—<br />

conoencration in estimating <strong>the</strong>rmal reservoir<br />

temperatures. The difficulties include <strong>the</strong><br />

following: (1) <strong>the</strong> silica may have already<br />

polymerized or precipitated so that direct<br />

application <strong>of</strong> <strong>the</strong> silica geo<strong>the</strong>rmometer (Fournier<br />

and Rowe, 1966) will indicate a low reservoir<br />

temperature; (2) <strong>the</strong> <strong>the</strong>rmal water is probably<br />

mixed with dilute meteoric water giving rise to<br />

<strong>the</strong> observed spring water compositions and<br />

temperatures; and (3) <strong>the</strong>.diluting water or <strong>the</strong><br />

warm mixed water may contain some silica<br />

originating from low-temperature serpentine<br />

dissolution. For comparison, <strong>the</strong> conductive and<br />

adiabatic (with assumed subsurface steam loss at<br />

lOQOC) silica-mixing-model temperatures<br />

(Truesdell and Fournier, 1977) <strong>of</strong> <strong>the</strong> warm springs<br />

are shown in Table 1. Despite all <strong>of</strong> <strong>the</strong> possible<br />

problems using silica concentrations in springs<br />

from this area, <strong>the</strong> adiabatic mixed-water<br />

temperatures are in moderate to good agreement<br />

with <strong>the</strong> Na-K-Ca temperatures. Fournier (1979)'<br />

indicated that silica reequilibratlon is more<br />

likely to occur than Na-K-Ca reequilibratlon. The<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!