30.06.2013 Views

multiple time scale dynamics with two fast variables and one slow ...

multiple time scale dynamics with two fast variables and one slow ...

multiple time scale dynamics with two fast variables and one slow ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

y<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

−0.05<br />

ε=0.001, p=0, s=1.2463<br />

−0.1<br />

0<br />

x 0.1−0.2<br />

0 0.2 0.4 0.6 0.8 1<br />

2<br />

x<br />

1<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

0.1<br />

0.05<br />

0<br />

ε=0.001, p=0, s=1.2463<br />

Figure 4.3: Illustration of the algorithm for computing homoclinic orbits<br />

in the FitzHugh-Nagumo equation. (a)Slow manifolds S l,ǫ <strong>and</strong><br />

S r,ǫ are shown in black <strong>and</strong> the unstable manifold of the equilibrium<br />

W u (q) is displayed in red. (b) Pieces of the homoclinic orbit;<br />

<strong>slow</strong> segments in black, <strong>fast</strong> segments in red <strong>and</strong> S shown<br />

in blue.<br />

y<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

y<br />

ε=0.001, p=0, s=1.2463<br />

−0.02<br />

x 2<br />

−0.04<br />

Figure 4.4: Homoclinic orbit (green) of the FitzHugh-Nagumo equation<br />

representing a <strong>fast</strong> wave. The equilibrium point q is shown<br />

in red.<br />

110<br />

−0.06<br />

x 2<br />

0<br />

−0.05<br />

0.2<br />

−0.1<br />

x 1<br />

0.4<br />

0<br />

0.6<br />

0.2<br />

x 1<br />

0.4<br />

0.6<br />

0.8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!