22.07.2013 Views

2011 QCD and High Energy Interactions - Rencontres de Moriond ...

2011 QCD and High Energy Interactions - Rencontres de Moriond ...

2011 QCD and High Energy Interactions - Rencontres de Moriond ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

y non-perturbative effects. Using the above estimates for ˜ Λu 17 <strong>and</strong> ˜ Λc 17 , we find that the CP<br />

asymmetry in the SM can be in the range −0.6% < ASM Xsγ < 2.8%.<br />

Beyond the SM, where the Wilson coefficients can be complex, we find that the asymmetry<br />

should be<br />

40 <br />

AXsγ<br />

40 Λc αs<br />

≈ −<br />

π<br />

81 9 mb π + ˜ Λc <br />

17<br />

Im<br />

mb<br />

C1<br />

<br />

4αs<br />

−<br />

C7γ 9π − 4παs<br />

<br />

˜Λ78<br />

espec Im<br />

mb<br />

C8g<br />

C7γ<br />

<br />

˜Λ u<br />

17 −<br />

−<br />

˜ Λc 17<br />

+ 40<br />

<br />

Λc αs C1<br />

Im ɛs . (8)<br />

9 π<br />

mb<br />

mb<br />

Notice that the second term in this equation <strong>de</strong>pends on the flavor of the spectator quark.<br />

In other words, the CP asymmetry can be different for charged <strong>and</strong> neutral B’s. This effect<br />

arises already at or<strong>de</strong>r Λ<strong>QCD</strong>/mb for the resolved photon contribution. For the direct photon<br />

contribution such effects are more power suppressed. This allows us to suggest a new test of<br />

physics beyond the SM by measuring the CP asymmetry difference<br />

A X − s γ − A X 0 s γ ≈ 4π 2 αs<br />

˜Λ78<br />

mb<br />

Im C8g<br />

C7γ<br />

C7γ<br />

≈ 12% ×<br />

˜Λ78 C8g<br />

Im . (9)<br />

100 MeV C7γ<br />

We conclu<strong>de</strong> with several comments about ¯ B → Xd γ. All the above expressions apply also<br />

to this <strong>de</strong>cay mo<strong>de</strong>. All that we need to do is replace ɛs by ɛd = (VubV ∗ ud )/(VtbV ∗<br />

td ) = (¯ρ−i¯η)/(1−<br />

¯ρ+i¯η). As a result the CP asymmetry is enhanced by a factor of Im(ɛd)/Im(ɛs) ≈ −22. Including<br />

resolved photon contributions we find an asymmetry in the range −62% < ASM Xdγ < 14%. Another<br />

quantity of interest is the untagged CP asymmetry for ¯ B → Xs+d γ. Up to tiny U-spin breaking<br />

corrections, the direct photon contribution to the untagged asymmetry vanishes in SM 5,2,14 .<br />

This result does not change even after including resolved photon effects.<br />

Acknowledgments<br />

I would like to thank organizers for the invitation to give a talk at <strong>Moriond</strong> <strong>QCD</strong> <strong>2011</strong>. This<br />

work is supported by DOE grant DE-FG02-90ER40560.<br />

References<br />

1. Heavy Flavor Averaging Group, [arXiv:1010.1589].<br />

2. A. L. Kagan, M. Neubert, Phys. Rev. D 58, 094012 (1998).<br />

3. H. H. Asatryan, H. M. Asatrian, G. K. Yeghiyan, G. K. Savvidy, Int. J. Mod. Phys. A 16,<br />

3805 (2001).<br />

4. M. Benzke, S. J. Lee, M. Neubert, G. Paz, Phys. Rev. Lett. 106, 141801 (<strong>2011</strong>).<br />

5. J. M. Soares, Nucl. Phys. B 367, 575 (1991).<br />

6. A. Ali, H. Asatrian, C. Greub, Phys. Lett. B 429, 87 (1998).<br />

7. T. Hurth, E. Lunghi, W. Porod, Nucl. Phys. B 704, 56 (2005).<br />

8. M. Bona et al. [ SuperB Collaboration ], [arXiv:0709.0451].<br />

9. T. Aushev et al., [arXiv:1002.5012].<br />

10. S. J. Lee, M. Neubert, G. Paz, Phys. Rev. D 75, 114005 (2007).<br />

11. M. Benzke, S. J. Lee, M. Neubert, G. Paz, JHEP 1008, 099 (2010);<br />

12. S. J. Lee <strong>and</strong> M. Neubert, Phys. Rev. D 72, 094028 (2005)<br />

13. M. Benzke, S. J. Lee, M. Neubert, G. Paz, in preparation.<br />

14. T. Hurth, T. Mannel, Phys. Lett. B 511, 196 (2001).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!