22.07.2013 Views

2011 QCD and High Energy Interactions - Rencontres de Moriond ...

2011 QCD and High Energy Interactions - Rencontres de Moriond ...

2011 QCD and High Energy Interactions - Rencontres de Moriond ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

iterative midpoint cone algorithm with a cone size of Rη,φ = 0.7. Jets must satisfy quality criteria<br />

which suppress background from leptons, photons, <strong>and</strong> <strong>de</strong>tector noise effects. The measured jet<br />

energy is corrected (different to 4 ) for the energy response of the calorimeter, energy showering in<br />

<strong>and</strong> out the jet cone, <strong>and</strong> additional energy from event pile-up <strong>and</strong> multiple proton interactions.<br />

The plot b) of Fig. 2 shows the values of σeff which were extracted in three intervals<br />

< 20 GeV, 20 < pjet2 < 25 GeV <strong>and</strong><br />

of the second jet transverse momentum: 15 < p jet2<br />

T<br />

25 < p jet2<br />

T < 30 GeV 5 by comparing the number of the observed DP γ+ 3 jets events occurring<br />

in one p¯p collision to the number of DI γ+ 3 jets. The knowledge of cross section of inelastic<br />

non-diffractive (hard) p¯p interactions σhard was nee<strong>de</strong>d also. It was found by extrapolation of<br />

the values σhard, measured by CDF <strong>and</strong> D0, up to √ s = 1.96 TeV.<br />

The fraction of DP events is <strong>de</strong>termined by using a set of ∆Sφ , ∆SpT , <strong>and</strong> ∆S p ′ T variables<br />

sensitive to the kinematic configurations of the two in<strong>de</strong>pen<strong>de</strong>nt scatterings of parton pairs,<br />

specifically to the difference between the pT imbalance of the two object pairs in DP <strong>and</strong> SP<br />

γ+ 3jets events. The ∆SpT ,∆S p ′ T variables are used in 2,4 , while the ∆Sφ is first proposed in 5<br />

measurement. The extracted values of DP fraction are shown in Fig.2, c). It is seen that the<br />

DP fraction, measured by 5 in three (of equal width) intervals of the second (or<strong>de</strong>red in pT) jet<br />

transverse momentum p jet2<br />

T , gives an essential contribution to total cross section (from about<br />

47% down to 24%) within the 15 < p jet2<br />

T<br />

a)<br />

S<br />

Δ<br />

/d<br />

3j<br />

γ<br />

σ<br />

) d<br />

3j<br />

γ<br />

σ<br />

(1/<br />

Data / Theory<br />

1<br />

-1<br />

10<br />

-1<br />

DØ, L = 1.0 fb<br />

γ<br />

Data<br />

50 < p < 90 GeV<br />

T<br />

Pythia, tune A<br />

jet1<br />

p > 30 GeV<br />

Pythia, tune DW T<br />

jet2<br />

Pythia, tune S0 15 < p < 30 GeV<br />

T<br />

jet3<br />

Pythia, tune P0 p > 15 GeV<br />

T<br />

Sherpa, with MPI<br />

Pythia, no MPI<br />

Sherpa, no MPI<br />

Total uncertainty<br />

1.4 1.40<br />

0.5 1 1.5 2 2.5 3<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0 0.5 1 1.5 2 2.5 3<br />

Δ S (rad)<br />

b)<br />

φ<br />

Δ<br />

/d<br />

(1/ σγ2j)<br />

dσγ2j<br />

Data / Theory<br />

10<br />

1<br />

-1<br />

10<br />

-2<br />

10<br />

-1<br />

DØ, L = 1.0 fb<br />

Data<br />

Pythia, tune A<br />

Pythia, tune DW<br />

Pythia, tune S0<br />

Pythia, tune P0<br />

Sherpa, with MPI<br />

Pythia, no MPI<br />

Sherpa, no MPI<br />

Total uncertainty<br />

γ<br />

50 < p < 90 GeV<br />

T<br />

jet1<br />

p > 30 GeV<br />

T<br />

jet2<br />

15 < p < 20 GeV<br />

T<br />

1.4 1.40<br />

0.5 1 1.5 2 2.5 3<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0 0.5 1 1.5 2 2.5 3<br />

Δ φ (rad)<br />

< 30 GeV range.<br />

c)<br />

φ<br />

Δ<br />

/d<br />

(1/ σγ2j)<br />

dσγ2j<br />

Data / Theory<br />

10<br />

1<br />

-1<br />

10<br />

-2<br />

10<br />

-1<br />

DØ, L = 1.0 fb<br />

Data<br />

Pythia, tune A<br />

Pythia, tune DW<br />

Pythia, tune S0<br />

Pythia, tune P0<br />

Sherpa, with MPI<br />

Pythia, no MPI<br />

Sherpa, no MPI<br />

Total uncertainty<br />

γ<br />

50 < p < 90 GeV<br />

T<br />

jet1<br />

p > 30 GeV<br />

T<br />

jet2<br />

20 < p < 25 GeV<br />

T<br />

1.4 1.40<br />

0.5 1 1.5 2 2.5 3<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0 0.5 1 1.5 2 2.5 3<br />

Δ φ (rad)<br />

d)<br />

T<br />

φ<br />

Δ<br />

/d<br />

(1/ σγ2j)<br />

dσγ2j<br />

Data / Theory<br />

10<br />

1<br />

-1<br />

10<br />

-2<br />

10<br />

-1<br />

DØ, L = 1.0 fb<br />

Data<br />

Pythia, tune A<br />

Pythia, tune DW<br />

Pythia, tune S0<br />

Pythia, tune P0<br />

Sherpa, with MPI<br />

Pythia, no MPI<br />

Sherpa, no MPI<br />

Total uncertainty<br />

γ<br />

50 < p < 90 GeV<br />

T<br />

jet1<br />

p > 30 GeV<br />

T<br />

jet2<br />

25 < p < 30 GeV<br />

T<br />

1.6 1.60<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.5 1 1.5 2 2.5 3<br />

0.4<br />

0 0.5 1 1.5 2 2.5 3<br />

Δ φ (rad)<br />

Figure 3: a) The (1/σγ3j)dσγ3j/d∆S cross sections in data <strong>and</strong> MC mo<strong>de</strong>ls <strong>and</strong> Data/Theory (only mo<strong>de</strong>ls<br />

including MPI) ratios for the bin 15 < p jet2<br />

T < 30 GeV; b) The (1/σγ2j)dσγ2j/d∆φ cross sections in data <strong>and</strong> MC<br />

mo<strong>de</strong>ls <strong>and</strong> Data/Theory (only mo<strong>de</strong>ls including MPI) ratios for the bin 15 < p jet2<br />

T < 20 GeV; c) Same as in b),<br />

but for the bin 20 < p jet2<br />

T < 25 GeV; d) Same as in b), but for the bin 25 < pjet2<br />

T < 30 GeV.<br />

Plots a) - c) in Fig.3 present the four D0 measurements of differential cross sections (with<br />

respect to ∆S- <strong>and</strong> ∆φ- angle variables, shown correspondingly in the plots b) <strong>and</strong> c) of Fig.2)<br />

(1/σγ3j)dσγ3j/d∆S in a single p jet2<br />

T bin (15−30 GeV) for γ+3 jet events <strong>and</strong> (1/σγ2j)dσγ2j/d∆φ in<br />

three p jet2<br />

T bins (15 − 20, 20 − 25, <strong>and</strong> 25 − 30 GeV) for γ + 2 jet events. The differential distributions<br />

<strong>de</strong>crease by two or<strong>de</strong>r of magnitu<strong>de</strong> when moving from ∆S (∆φ) ≈ π to 0 <strong>and</strong> have<br />

a total uncertainty (δtot) between 7 <strong>and</strong> 30%, which is dominated by systematics (δsyst). They<br />

are compared to predictions from a few multipal parton interactions (MPI) mo<strong>de</strong>ls implemented<br />

in pythia <strong>and</strong> sherpa. For completeness, predictions from SP mo<strong>de</strong>ls in pythia <strong>and</strong> sherpa<br />

(sherpa-1 mo<strong>de</strong>l) are also shown here. From these plots in Fig.3 one can see that the consi<strong>de</strong>red<br />

variables, ∆S <strong>and</strong> ∆φ, are very sensitive to the mo<strong>de</strong>ls, with predictions varying significantly<br />

<strong>and</strong> differing from each other by up to a factor 2.5 at the small ∆S <strong>and</strong> ∆φ angles, i.e. right in<br />

the place where the relative DP contribution is expected to be the highest. It is seen also that<br />

that (a) the predictions <strong>de</strong>rived from SP mo<strong>de</strong>ls differ significantly from the measurements; (b)<br />

the data favor mostly the predictions done with new pythia MPI mo<strong>de</strong>ls, S0 <strong>and</strong> Perugia <strong>and</strong><br />

also sherpa with its MPI mo<strong>de</strong>l; while (c) the predictions from old MPI mo<strong>de</strong>ls, tune A <strong>and</strong><br />

DW, are much less favored. Among the consi<strong>de</strong>red new MPI mo<strong>de</strong>ls, agreement with data is a<br />

little worse for the S0 <strong>and</strong> P-soft mo<strong>de</strong>ls 6 .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!