22.07.2013 Views

2011 QCD and High Energy Interactions - Rencontres de Moriond ...

2011 QCD and High Energy Interactions - Rencontres de Moriond ...

2011 QCD and High Energy Interactions - Rencontres de Moriond ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

20<br />

D 15<br />

0 1 → D0 20<br />

γ Final Fit in Helicity Bins 15<br />

D 0 1 → D0 γ Final Fit in Helicity Bins<br />

Belle Belle Preliminary Results Results<br />

Cross-feed (fixed), (fixed), signal signal<br />

Events / ( 0.0111111 Ge<br />

10<br />

5<br />

0<br />

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3<br />

0<br />

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3<br />

0<br />

0<br />

M( ! D ) (GeV)<br />

M( ! D ) (GeV)<br />

• 605 fb Signal - cos # " [-1.0, -0.7]<br />

Signal - cos # " [-0.7, -0.4]<br />

J<br />

J<br />

Signal - cos # " [-0.4, 0.0]<br />

Signal - cos # " [0.0, +0.4]<br />

J<br />

J<br />

25<br />

25<br />

25<br />

25<br />

−1 • 605 fb Υ(4S) data<br />

Signal - cos # " [-1.0, -0.7]<br />

Signal - cos # " [-0.7, -0.4]<br />

J<br />

J<br />

25<br />

25<br />

−1 0<br />

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3<br />

0<br />

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3<br />

0<br />

0<br />

M( ! D ) (GeV)<br />

M( ! D ) (GeV)<br />

cos θJ ∈ [-1.0;-0.7] [-0.7;-0.4] [-0.4;0.0] Υ(4S) data [0.0;0.4]<br />

Signal - cos # " [-0.4, 0.0]<br />

Signal - cos # " [0.0, +0.4]<br />

J<br />

J<br />

25<br />

25<br />

Events / ( 0.0111111 GeV )<br />

Events / ( 0.0111111 GeV )<br />

20<br />

15<br />

10<br />

5<br />

20<br />

15<br />

10<br />

5<br />

0 0<br />

2.2 2.2 2.3 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.8 2.7 2.9 2.8 2.9 3 3<br />

0<br />

0<br />

M( ! D ) (GeV) M( ! D ) (GeV)<br />

Events / ( 0.0111111 GeV )<br />

Events / ( 0.0111111 GeV )<br />

20<br />

15<br />

10<br />

Events / ( 0.0111111 GeV )<br />

20<br />

15<br />

10<br />

Events / ( 0.0111111 GeV )<br />

20<br />

15<br />

10<br />

5 5<br />

5 5<br />

5 5<br />

• Excess • Excess in backward in backward<br />

0 0<br />

0<br />

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3<br />

0<br />

2.2 2.3 2.2 2.4 2.3 2.5 2.4 2.6 2.5 2.7 2.6 2.8 2.7 2.9 2.8 2.9 3 3 0<br />

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 2.2 2.3 0<br />

2.2 2.4 2.3 2.5 2.4 2.6 2.5 2.7 2.6 2.8 2.7 2.9 2.8 3 2.9 3<br />

0<br />

0<br />

0<br />

0<br />

M( ! D ) (GeV) M( ! D ) (GeV)<br />

M( ! D ) (GeV) 0<br />

M( ! D ) (GeV)<br />

M( ! D ) (GeV) 0<br />

M( ! D ) (GeV)<br />

Events / ( 0.0111111 GeV )<br />

Events / ( 0.0111111 Ge<br />

Events / ( 0.0111111 GeV )<br />

20<br />

15<br />

10<br />

• Simultaneous • Simultaneous fit to fit to<br />

20 20<br />

helicity helicity bins bins<br />

• Signal yield, σ, µ<br />

floated floated<br />

5<br />

15 15<br />

• Signal yield, σ, µ<br />

10 10<br />

bin (top-left)<br />

Signal - cos # " [-0.4, 0.0]<br />

Signal - cos # " [0.0, +0.4]<br />

J<br />

J<br />

25<br />

25<br />

• Feed-down<br />

20<br />

20<br />

requires further<br />

15<br />

15<br />

study (see backup)<br />

10<br />

10<br />

• Clear signal peak<br />

5<br />

5<br />

• (Plan to look in<br />

0<br />

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3<br />

0<br />

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3<br />

0<br />

0<br />

M( ! D ) (GeV)<br />

M( ! D ) (GeV) D0 bin (top-left)<br />

Signal - cos # " [-0.4, 0.0]<br />

Signal - cos # " [0.0, +0.4]<br />

J<br />

J<br />

25<br />

25<br />

• Feed-down<br />

20<br />

20<br />

requires further<br />

15<br />

15<br />

study (see backup)<br />

10<br />

10<br />

• Clear signal peak<br />

5<br />

5<br />

• (Plan to look in<br />

0<br />

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3<br />

0<br />

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3<br />

0<br />

0<br />

M( ! D ) (GeV)<br />

M( ! D ) (GeV) D → K 3π also)<br />

0 Figure 2: m(D<br />

→ K 3π also)<br />

0 γ) distribution of the reconstructed c<strong>and</strong>idates. Points with errors correspond to data, with the<br />

total fit overlaid as a solid blue curve. The green curve is the signal component, while the red curve is the peaking<br />

background one.<br />

have a small contribution in the final result, but the disagreement between the fit <strong>and</strong> the data<br />

in that range generate an un<strong>de</strong>restimation of the peaking background component. Therefore,<br />

work is still in progress to better un<strong>de</strong>rst<strong>and</strong> the contribution from this background process.<br />

Events / ( 0.0111111 GeV )<br />

Events / ( 0.0111111 GeV )<br />

I.J. Watson I.J. Watson (Sydney) (Sydney) Radiative Radiative Transitions Transitions at Belle at Belle<br />

I.J. Watson I.J. Watson (Sydney) (Sydney) Radiative Radiative Transitions Transitions at Belle at Belle ICHEP ICHEP 2010 2010 18 / 26 18 / 26<br />

Events / ( 0.0111111 G<br />

Events / ( 0.0111111 GeV )<br />

10<br />

5<br />

Preliminary Preliminary Preliminary Preliminary<br />

4 Study of the <strong>de</strong>cays B → Ds1(2536) + D (∗) using BELLE dataset<br />

The Ds1(2536) + is a narrow P-wave resonance observed some years ago, but its properties are<br />

still not well measured. In this analysis we study the production of Ds1(2536) + in doubly<br />

charmed B meson <strong>de</strong>cays, B → Ds1(2536) + D (∗) , where D (∗) is either a D0 , D− or D∗− , using<br />

a dataset of 605 fb −1 collected at CM energies near 10.58 GeV by the BELLE <strong>de</strong>tector 8 .<br />

The Ds1(2536) + are reconstructed in three mo<strong>de</strong>s: D∗0 (D0γ)K + , D∗0 (D0π0 )K + , <strong>and</strong><br />

D∗+ (D0π + )K0 S. The B c<strong>and</strong>idates are also reconstructed in three mo<strong>de</strong>s: B + → Ds1(2536) + D0 ,<br />

B0 → Ds1(2536) + D− , <strong>and</strong> B0 → Ds1(2536) + D∗− . The signal region is <strong>de</strong>fined as a box in the<br />

∆E-mbc plane. The signal yields for each combination of B <strong>and</strong> Ds1(2536) + <strong>de</strong>cay mo<strong>de</strong>s are<br />

obtained with a simultaneous fit to the data <strong>and</strong> the fit results are shown in Fig. 3.<br />

5<br />

Events/1 MeV/c 2<br />

10<br />

0<br />

10<br />

0<br />

10<br />

(a)<br />

0<br />

2.5 2.54<br />

(b) (c)<br />

(d) (e) (f)<br />

(g) (h) (i)<br />

2.5 2.54<br />

D ∗+ (D 0 π + )K 0 S<br />

20<br />

15<br />

10<br />

M(Ds1 (2536)), GeV/c 2<br />

2.5 2.54 2.58<br />

FIG. 2: Ds1(2536) + mass distributions for: a), b), c) B + → Ds1(2536) + ¯ D 0 ; d), e), f) B 0 → Ds1(2536) + D − <strong>and</strong> g), h), i)<br />

B 0 → Ds1(2536) + D ∗− final states, followed by Ds1(2536) + <strong>de</strong>cays to a), d), g) D ∗0 (D 0 γ)K + ; b), e), h) D ∗0 (D 0 π 0 )K + <strong>and</strong> c),<br />

f), i) D ∗+ (D 0 π + )K 0 S. The points with error bars are the data, (a) while the curves show the fit result.<br />

ous fit to all B <strong>and</strong> Ds1(2536) + <strong>de</strong>cay channels we<br />

measure B(B + → Ds1(2536) + ¯ D0 ) × B(Ds1(2536) + →<br />

(D∗0K + + D∗+ K0 )) = (3.97 ± 0.85 ± 0.56) ×<br />

10−4 , B(B0 → Ds1(2536) + D− ) × B(Ds1(2536) + →<br />

(D∗0K + + D∗+ K0 )) = (2.75 ± 0.62 ± 0.36) × 10−4 <strong>and</strong><br />

B(B0 → Ds1(2536) + D∗− )×B(Ds1(2536) + → (D∗0K + +<br />

D∗+ K0 )) = (5.01 ± 1.21 ± 0.70) × 10−4 . The ratio<br />

B(Ds1 → D∗0K + )/B(Ds1 → D∗+ K0 ) is measured to<br />

be 0.88±0.24±0.08. The first error is statistical <strong>and</strong> the<br />

second one is systematic. The obtained results are consistent<br />

within errors with the previous measurements [6].<br />

Using the latest measurements of the B → D (∗) D (∗)<br />

s(J)<br />

branching fractions [1] we calculate the ratios discussed<br />

in [4]:<br />

RD0 = B(B → DD∗ s0 (2317))<br />

=0.10 ± 0.03,<br />

B(B → DDs)<br />

RD∗0 = B(B → D∗D∗ s0(2317))<br />

B(B → D∗ =0.15 ± 0.06,<br />

Ds)<br />

B(B → DDs1(2460))<br />

RD1 =<br />

B(B → DD∗ s )<br />

=0.44 ± 0.11,<br />

RD∗1 = B(B → D∗Ds1(2460)) B(B → D∗D∗ s )<br />

In addition, the same ratios are calculated for B →<br />

D<br />

=0.58 ± 0.12.<br />

(∗) Ds1(2536) + <strong>de</strong>cays using combined BaBar [6] <strong>and</strong><br />

current results:<br />

B(B → DDs1(2536))<br />

RD1 ′ =<br />

B(B → DD∗ s )<br />

=0.049 ± 0.010,<br />

RD∗1 ′ = B(B → D∗Ds1(2536)) B(B → D∗D∗ s )<br />

=0.044 ± 0.010.<br />

In these calculations it is assumed that the <strong>de</strong>cay mo<strong>de</strong>s<br />

D∗ s0 (2317)+ → D + s π0 <strong>and</strong> Ds1(2536) + → (D∗0K + +<br />

D∗+ K0 ) are dominant.<br />

According to [3, 4] within the factorization mo<strong>de</strong>l <strong>and</strong><br />

in the heavy quark limit these ratios should be of or<strong>de</strong>r<br />

unity for the D∗ s0 (2317) <strong>and</strong> Ds1(2460) whereas for the<br />

Ds1(2536) they can be very small. From the above ratios<br />

we can conclu<strong>de</strong> that while the <strong>de</strong>cay pattern of the<br />

Ds1(2536) follows the expectations, the new DsJ states<br />

are either not canonical c¯s mesons, or this approach does<br />

not work for these particles.<br />

We are grateful to A. Datta for useful discussions.<br />

We thank the KEKB group for the excellent operation<br />

of the accelerator, the KEK cryogenics group for the<br />

efficient operation of the solenoid, <strong>and</strong> the KEK computer<br />

group <strong>and</strong> the National Institute of Informatics<br />

B 0 → D + s1 D0<br />

B 0 → D + s1 D−<br />

B 0 → D + s1 D∗−<br />

Events / ( 0.0111111 G<br />

Events / ( 0.0111111 GeV )<br />

20<br />

15<br />

10<br />

5<br />

BELLE<br />

BELLE<br />

B <strong>de</strong>cay mo<strong>de</strong> B(×10 − 4) Signif.<br />

Ds1(2536) + (D∗K)D 0<br />

3.97 ± 0.85 ± 0.56 7.0σ<br />

Ds1(2536) + (D∗K)D − 2.75 ± 0.62 ± 0.36 6.9σ<br />

Ds1(2536) + (D∗K)D ∗− 5.01 ± 1.21 ± 0.70 6.3σ<br />

D∗K = D∗0K + + D∗+ K0 S ±(stat) ± (syst)<br />

Figure 3: (a) Ds1(2536) + mass distribution: the points with errors are the data, while the curves show the fit<br />

result. (b) Values for the measured branching fractions <strong>and</strong> corresponding significances.<br />

Results are consistent with previous measurements. We also compute the following branching<br />

ratios: B(Ds1(2536) + → D∗0K + )/B(Ds1 → D∗+ K0 S ) = 0.88 ± 0.24(stat) ± 0.08(syst), B(B →<br />

DDs1(2536))/B(B → DD∗ s) = 0.049 ± 0.010, <strong>and</strong> B(B → D∗Ds1(2536))/B(B → D∗D∗ s) =<br />

0.044 ± 0.010, <strong>and</strong> we find that they follow the theoretical expectations 9 .<br />

5 Measurements of Ds1(2536) + parameter values using BABAR dataset<br />

In this analysis a precise measurement of the Ds1(2536) + mass <strong>and</strong> <strong>de</strong>cay width is performed<br />

based on a dataset of 385 fb −1 collected at CM energies near 10.58 GeV by the BABAR <strong>de</strong>tector 10 .<br />

The Ds1(2536) + c<strong>and</strong>idates are reconstructed using the inclusive mo<strong>de</strong> with the following <strong>de</strong>cay<br />

chain: Ds1(2536) + → K 0 SD ∗+ (→ π + D 0 ), <strong>and</strong> D 0 → K − π + (π + π − ). To improve the mass<br />

(b)<br />

• Simulta • Sim<br />

helicity helic<br />

• Sig •<br />

flo<br />

• Excess • Exce<br />

bin bin (top(<br />

• Fe •<br />

req<br />

stu<br />

• Clear s<br />

• (Plan to<br />

D0 • Clea<br />

• (Pla<br />

D→ K 0 →

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!