22.07.2013 Views

2011 QCD and High Energy Interactions - Rencontres de Moriond ...

2011 QCD and High Energy Interactions - Rencontres de Moriond ...

2011 QCD and High Energy Interactions - Rencontres de Moriond ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

We then apply the Borel transformation 1 a<br />

ˆB(P 2 → M 2 )F (P 2 ) = 1<br />

∫<br />

dP<br />

2πi C<br />

2<br />

M 2 e−P 2 /M 2<br />

F (P 2 ), (4)<br />

where C <strong>de</strong>notes any contour that encloses the branch cuts in the P 2 plane from zero to infinity.<br />

Un<strong>de</strong>r the above transformation, Eq. (2) becomes<br />

f 2 π = − M 2em2π/M 2 ∫ s0<br />

2π<br />

4m 2 q<br />

ds ˆ B(P 2 → M 2 [<br />

ImΠ2(P<br />

)<br />

2 )<br />

s − P 2<br />

]<br />

. (5)<br />

The duality interval s0 is <strong>de</strong>termined by the requirement that fπ is least sensitive to the Borel<br />

mass M in the fπ − M plot. In Fig.1(a) we present the M <strong>de</strong>pen<strong>de</strong>nce of fπ for three different<br />

s0 inputs. It indicates that for s0 = 0.69 GeV 2 , we obtain an almost M-in<strong>de</strong>pen<strong>de</strong>nt behavior<br />

for about M > 2 GeV, which implies the value of fπ ≃ 0.132 GeV.<br />

3 Nonlocal con<strong>de</strong>nsate mo<strong>de</strong>l<br />

With the Wick contraction, we express the following matrix element as<br />

[<br />

⟨Ω|T ηµ(x)η † ]<br />

ν(0)<br />

|Ω⟩ = −⟨[iS u F (0 − x)]γµγ5[iS d F (x − 0)]γνγ5⟩<br />

+ ⟨: ū(x)γµγ5[iS d F (x − 0)]γνγ5u(0) :⟩<br />

+ ⟨: ¯ d(0)γνγ5[iS u F (0 − x)]γµγ5d(x) :⟩<br />

+ ⟨: ū(x)γµγ5d(x) ¯ d(0)γνγ5u(0) :⟩. (6)<br />

where the normal or<strong>de</strong>ring terms, representing non-perturbative effects, are usually dropped for<br />

trivial vacuum. We assume that these effects can be absorbed into a dressed fermion propagator,<br />

[<br />

⟨Ω|T ηµ(x)η † ]<br />

ν(0) |Ω⟩ = −⟨[iS u (0 − x)]γµγ5[iS d (x − 0)]γνγ5⟩. (7)<br />

The KL representation for a dressed propagator of the quark q is written as 3 ,<br />

∫<br />

⟨Ω|T[q(z)q(0)]|Ω⟩ = i<br />

=<br />

d4 ∫<br />

k<br />

∞<br />

2 /kρq1<br />

e−ik·z dµ<br />

(2π) 4<br />

0<br />

(µ2 ) + ρ q<br />

2 (µ2 )<br />

k2 − µ 2 + iϵ<br />

∫ (<br />

∞ z2 ds exp<br />

0 4 s<br />

) ∫ ∞<br />

dµ<br />

0<br />

2 (<br />

exp − µ2<br />

) [i/z<br />

s 2 sρq1<br />

(µ2 ) + ρ q<br />

2 (µ2 ]<br />

) ,(8)<br />

1<br />

16π 2<br />

where the spectral <strong>de</strong>nsity functions ρ q<br />

1,2 (µ2 ) <strong>de</strong>scribe the glutinous medium effect, <strong>and</strong> µ is<br />

an effective mass. The KL representation can be <strong>de</strong>emed as a superposition of free quark<br />

propagators for all mass eigenstates with the weights ρ q<br />

1,2 (µ2 ). We then <strong>de</strong>compose the above<br />

matrix element into the perturbative <strong>and</strong> non-perturbative pieces<br />

⟨Ω|T[q(z)q(0)]|Ω⟩ ≡ iZSF (z, mq) + ⟨Ω| : q(z)q(0) : |Ω⟩, (9)<br />

respectively, with Z being a renormalization constant, SF (z, mq) being the quark propagator<br />

in perturbation theory, mq<br />

contribution from large µ<br />

being the quark mass. The non-perturbative piece collects the<br />

2 ,<br />

⟨Ω| : q(z)q(0) : |Ω⟩ = 1<br />

16π2 ∫ ∞<br />

ds exp<br />

0<br />

(<br />

z2 4 s<br />

) ∫ ∞<br />

µ 2 dµ<br />

c<br />

2 (<br />

exp − µ2<br />

) [i/z<br />

s 2 sρq 1 (µ2 ) + ρ q<br />

2 (µ2 ]<br />

) . (10)<br />

a The Borel transformation can be <strong>de</strong>fined in different ways 2 . In this work we adopt the integral representation.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!