09.01.2014 Views

Pictures Paths Particles Processes

Pictures Paths Particles Processes

Pictures Paths Particles Processes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

November 7, 2013 139<br />

5.3.4 Truncating Dirac particles : external Dirac lines<br />

Let us now return to the truncation argument that gave us the Feynman rule for<br />

external lines in chapter 4. We shall redo this for Dirac particles moving between<br />

production and decay. As a first case, let the ‘p’-line connecting production<br />

and decay be oriented from production to decay, as indicated in the following<br />

diagram :<br />

}<br />

p<br />

p<br />

a<br />

b<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

A<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

k<br />

1,2,...<br />

p<br />

B<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

}<br />

q<br />

1,2,...<br />

According to the convention described above we then have for the amplitude<br />

i¯h(/p + m)<br />

M = [B]<br />

p 2 − m 2 [A] . (5.76)<br />

+ imΓ<br />

Note that, in this amplitude, the factor [A] must carry the upper Dirac index<br />

of a spinor, and [B] the lower index of a conjugate spinor. p µ , obviously, carries<br />

positive energy. As we let Γ vanish and p µ approaches the mass shell, we may<br />

then write<br />

/p + m = ∑ u(p, s) u(p, s) , (5.77)<br />

s<br />

where the sum over s runs over two values, s µ and −s µ . Following the truncation<br />

argument, we readily see that the spinor u(p, s) must then be included in the<br />

decay amplitude, and u(p, s) in the production amplitude.<br />

In the alternative case, where the line is oriented against the flow of energy,<br />

the amplitude is given by<br />

}<br />

p<br />

p<br />

a<br />

b<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

A<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

k<br />

1,2,...<br />

p<br />

B<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

}<br />

q<br />

1,2,...<br />

and reads (again with our convention !)<br />

i¯h(−/p + m)<br />

M = [A]<br />

p 2 − m 2 [B] . (5.78)<br />

+ imΓ<br />

Note that it is now [A] that is the conjugate spinor, and [B] the regular one. Of<br />

course, they describe a physical process different from the first case ! We are

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!