09.01.2014 Views

Pictures Paths Particles Processes

Pictures Paths Particles Processes

Pictures Paths Particles Processes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

November 7, 2013 37<br />

If we wish, we may treat the λ 2 term as an interaction, described by a vertex<br />

with two legs. the SDe is then seen to be<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

= +<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

+<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

11110000<br />

11110000<br />

11110000<br />

11110000<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

+<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

0000 1111 000000<br />

111111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

+<br />

000000<br />

111111<br />

000000<br />

111111<br />

. (1.61)<br />

corresponding to<br />

φ(J) = J µ − λ 2<br />

µ φ(J) − λ 4<br />

6µ<br />

(<br />

)<br />

φ(J) 3 + 3φ(J) ∂<br />

∂J φ(J) +<br />

∂2<br />

(∂J) 2 φ(J)<br />

. (1.62)<br />

Multiplying the equation by µ and transposing the λ 2 term to the left, we obtain<br />

φ(J) =<br />

J λ 4<br />

−<br />

µ + λ 2 6(µ + λ 2 )<br />

(<br />

)<br />

φ(J) 3 + 3φ(J) ∂<br />

∂J φ(J) +<br />

∂2<br />

(∂J) 2 φ(J)<br />

, (1.63)<br />

precisely what we woud have obtained by taking the combination (µ + λ 2 ) as<br />

the kinetic part from the start. This procedure, by which the effect of two-point<br />

(effective) vertices is subsumed in a redefinition of the kinetic part, is called<br />

Dyson summation. In the present example, the summation is of course trivial ;<br />

but we shall see that two-point interactions can also arise from more complicated<br />

Feynman diagrams corresponding to higher orders in perturbation theory. The<br />

manner in which Dyson summation is usually treated is by explicitly writing<br />

out the propagator, ‘dressed’ with two-point vertices in all possible ways :<br />

+ + + + · · ·<br />

= 1 µ − 1 µ λ 1<br />

2<br />

µ + 1 µ λ 1<br />

2<br />

µ λ 1<br />

2<br />

µ − 1 µ λ 1<br />

2<br />

µ λ 1<br />

2<br />

µ λ 1<br />

2<br />

µ + · · ·<br />

= 1 ∑<br />

(<br />

− λ ) k<br />

2<br />

µ µ<br />

= 1 µ<br />

k≥0<br />

1<br />

1 + λ 2 /µ = 1<br />

, (1.64)<br />

µ + λ 2<br />

where it should come as no surprise that we cheerfully ignore all issues about<br />

convergence, in the spirit of perturbation theory. Every propagator line can<br />

(and must !) be dressed in this way once any two-point vertex (elementary<br />

of effective, that is, as the result of a collection of closed loops with two legs<br />

sticking out) is at hand.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!