09.01.2014 Views

Pictures Paths Particles Processes

Pictures Paths Particles Processes

Pictures Paths Particles Processes

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

November 7, 2013 49<br />

The effective action itself, the integral over the above experession, has no nice<br />

simple form as in Eq.(1.98), but is of course calculable as soon as S(φ) is explicitly<br />

given ; moreover, we see that it will becomes undefined where S ′′ (φ)<br />

vanishes. From our diagrammatic approach we see that this will persist in all<br />

loop orders 31 .<br />

1.5.4 More fields<br />

So far, our main attention has been on theories of a single field. Suppose, for<br />

the sake of argument, that we have a theory of two fields instead:<br />

S(ϕ 1 , ϕ 2 ) = 1 2 µ 1ϕ 1 2 + 1 2 µ 2ϕ 2 2 + λ 4 ϕ 1 2 ϕ 2 2 . (1.104)<br />

This time, the coupling constant λ carries a factor 1/(2!)/(2!) since there are<br />

not four identical fields ‘meeting’ at the vertex, but rather two pairs of identical<br />

fields. We now need to distinguish between the two different fields, so we indicate<br />

the field type with either ‘1’ or ‘2’. The Feynman rules for this case are<br />

1<br />

1<br />

↔ ¯h µ 1<br />

,<br />

↔ J 1<br />

¯h<br />

,<br />

2<br />

2<br />

↔ ¯h µ 2<br />

,<br />

1 2 −λ ↔<br />

1 2 ¯h<br />

↔ J 2<br />

¯h . (1.105)<br />

There are two coupled Schwinger-Dyson equations, one for each field :<br />

,<br />

1<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

1<br />

= 1 1<br />

+ 2<br />

2<br />

1<br />

1<br />

+ 2<br />

2<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

0000 1111 00000 11111<br />

0000 1111 00000 11111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

1<br />

2<br />

+ 1<br />

2<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

+<br />

1<br />

000000<br />

1 000000<br />

111111<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

2<br />

2<br />

,<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

2 = 2 +<br />

2<br />

2<br />

+ 1<br />

1<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

2<br />

2<br />

1<br />

1<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

00000 11111<br />

0000 1111 00000 11111<br />

0000 1111 00000 11111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

2<br />

+<br />

1<br />

1<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

2<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

+<br />

2<br />

000000<br />

1 000000<br />

111111<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

1<br />

2<br />

,<br />

(1.106)<br />

31 Because in all 1PI diagrams we have to dress the propagators, which implies lots of S ′′ (φ)<br />

in the denominators.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!