09.01.2014 Views

Pictures Paths Particles Processes

Pictures Paths Particles Processes

Pictures Paths Particles Processes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

202 November 7, 2013<br />

7.4.4 The charged Klein-Gordon equation<br />

Just like the case of a Dirac particle in an e.m. field, that of a charged scalar in<br />

such a field allows us to write down a tree-level SDe for the scalar field, based<br />

on<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

=<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

+<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

000000<br />

111111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

(7.113)<br />

or, by explicitly use of the Fourier transforms of the fields :<br />

∫<br />

∫<br />

φ(x) = d 4 1<br />

y<br />

(2π) 4 d 4 k e −ik·(x−y) i¯h<br />

k 2 − m 2 + iɛ<br />

((<br />

i Q¯h<br />

) ∫ 1<br />

(2π) 8 d 4 pd 4 qe −ip·y−iq·y (p + q) µ A µ (q) φ(p)<br />

+ 1 )<br />

)<br />

(2i Q2<br />

A µ (y)A µ (y)φ(y) . (7.114)<br />

2 ¯h<br />

Note the occurence of the symmetry factor 1/2 in the last line. We can therefore<br />

arrive at the following classical field equation, where we have used the Lorenz<br />

condition ∂ · A = 0 :<br />

(<br />

− ∂ 2 − m 2) φ(x) = −iQA µ (x)∂ µ φ(x) − Q 2 A µ (x)A µ (x)φ(x) , (7.115)<br />

or ((i∂ + QA(x)) 2 − m 2 )<br />

φ(x) = 0 . (7.116)<br />

This is de Klein-Gordon equation for charged scalar fields. We see that the same<br />

‘minimal substitution rule’ p µ → p µ + QA µ as in the Dirac case is employed to<br />

account for the presence of the e.m. field ; and we see that the charge coupling<br />

constant Q is defined in the same way for both scalar and Dirac particles.<br />

7.5 The Landau-Yang theorem<br />

7.5.1 The photon polarisation revisited<br />

As stated above, any good amplitude for processes in which a photon is absorbed<br />

or produced must vanish under the handlebar operation. That means that,<br />

provided the amplitude is acceptable, we may add to any photon polarisation<br />

a piece of photon momentum. Let us consider a process with several photons<br />

present, with momenta q µ i and polarisation vectors ɛ µ i . We have, obviously,<br />

(q i · q i ) = (q i · ɛ i ) = 0 and (ɛ i · ɛ i ) = −1. From the above, we see that, if we<br />

wish, we may employ instead of ɛ i the more complicated object<br />

η i µ = ɛ i µ − (p · ɛ i)<br />

(p · q i ) q i µ , (7.117)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!