20.05.2014 Views

link to my thesis

link to my thesis

link to my thesis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

188 CHAPTER 10. H 2 MODEL-ORDER REDUCTION FROM ORDER N TO N-2<br />

The system of corresponding quadratic equations in x 1 ,...,x 7 and ρ 1 is:<br />

⎛<br />

1+ρ 1δ 1<br />

⎞<br />

⎛ ⎞ ⎛ ⎞<br />

e(δ 1) x2 1<br />

x 1 0<br />

1+ρ 1δ 2<br />

e(δ 2) x2 2<br />

x 2<br />

0<br />

1+ρ 1δ 3<br />

e(δ 3) x2 3<br />

x 3<br />

0<br />

1+ρ 1δ 4<br />

e(δ 4) x2 4<br />

− M(δ 1 ,...,δ 7 )<br />

x 4<br />

=<br />

0<br />

, (10.51)<br />

1+ρ 1δ 5<br />

e(δ 5) x2 5<br />

x 5<br />

0<br />

⎜<br />

1+ρ 1δ 6<br />

⎝ e(δ 6) x2 6<br />

⎟<br />

⎜<br />

⎠<br />

⎝<br />

x 6<br />

⎟ ⎜<br />

⎠ ⎝<br />

0 ⎟<br />

⎠<br />

0<br />

1+ρ 1δ 7<br />

e(δ 7) x2 7<br />

where M(δ 1 ,...,δ 7 ) is the complex matrix given by V (−δ 1 ,...,−δ 7 ) V (δ 1 ,...,δ 7 ) −1 .<br />

The linear constraint, defined by Equation (10.3), is given by:<br />

ã N−1 = 2304<br />

5 x 1 + ( 18144<br />

1625 − 45792<br />

1625 i)x 2 + ( 18144<br />

1625 + 45792<br />

1625 i)x 3<br />

− 23328<br />

25 x 4 + ( 688176<br />

5785 + 559872<br />

5785 i)x 5 + ( 688176<br />

5785 − 559872<br />

5785 i)x 6<br />

+ 2359296<br />

11125 x 7 = 0.<br />

(10.52)<br />

It is used <strong>to</strong> construct the matrix AãN−1 (ρ 1 ) T . This matrix is rational in ρ 1 , and<br />

after diagonal rescaling (according <strong>to</strong> Theorem 10.1) <strong>to</strong> make it polynomial in ρ 1 ,a<br />

matrix Ãã N−1<br />

(ρ 1 ) T is obtained. The <strong>to</strong>tal degree of ρ 1 in this matrix is N − 1=6<br />

(see Corollary 10.2). The size of the matrix Ãã N−1<br />

(ρ 1 ) T is 2 N × 2 N = 128 × 128. The<br />

sparsity structure of this matrix is shown in Figure 10.7.<br />

To find the solutions of the quadratic system of polynomial equations (10.51),<br />

which also satisfy the linear constraint (10.52), one has <strong>to</strong> find the solutions of the<br />

polynomial eigenvalue problem Ãã N−1<br />

(ρ 1 ) T v = 0. This is done by writing the polynomial<br />

matrix Ãã N−1<br />

(ρ 1 ) T as A 0 + ρ 1 A 1 + ...+ ρ 6 1A 6 and by using a linearization<br />

technique. This yields the generalized eigenvalue problem (B + ρ 1 C)ṽ = 0, with the<br />

matrices B and C defined as:<br />

⎛<br />

⎞<br />

0 I 0 0 0 0<br />

0 0 I 0 0 0<br />

0 0 0 I 0 0<br />

B =<br />

,<br />

0 0 0 0 I 0<br />

⎜<br />

⎟<br />

⎝ 0 0 0 0 0 I ⎠<br />

A 0 A 1 A 2 A 3 A 4 A 5<br />

⎛<br />

C =<br />

⎜<br />

⎝<br />

x 7<br />

⎞<br />

−I 0 0 0 0 0<br />

0 −I 0 0 0 0<br />

0 0 −I 0 0 0<br />

0 0 0 −I 0 0<br />

⎟<br />

0 0 0 0 −I 0 ⎠<br />

0 0 0 0 0 A 6<br />

.<br />

(10.53)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!