20.05.2014 Views

link to my thesis

link to my thesis

link to my thesis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

222 CHAPTER 11. H 2 MODEL-ORDER REDUCTION FROM ORDER N TO N-3<br />

11.5 Example<br />

11.5.1 Model-order reduction from 4 <strong>to</strong> 1<br />

The system H(s) <strong>to</strong> be reduced is a system of order 4 and is described in state space<br />

form with the matrices A, B, and C:<br />

⎛<br />

⎞ ⎛ ⎞<br />

− 34<br />

15<br />

1 0 0<br />

2<br />

−<br />

A =<br />

77<br />

36<br />

0 1 0<br />

⎜<br />

⎝ − 247<br />

270<br />

0 0 1<br />

⎟<br />

⎠ ,B= 4<br />

⎜<br />

⎝ −9<br />

⎟<br />

⎠ ,C= ( 1 0 0 0 ) . (11.75)<br />

− 5<br />

36<br />

0 0 0<br />

−2<br />

This yields the fourth-order transfer function H(s) =C(sI − A) −1 B:<br />

−2 − 9s +4s 2 +2s 3<br />

H(s) =<br />

5<br />

36 + 247<br />

270 s + 77<br />

36 s2 + 34<br />

15 s3 + s . (11.76)<br />

4<br />

The poles of the system H(s) are δ 1 = − 2 3 + 1 2 i, δ 2 = − 2 3 − 1 2 i, δ 3 = − 3 5 and δ 4 = − 1 3 .<br />

Because the reduction is from order 4 <strong>to</strong> 1, it is easily possible <strong>to</strong> compute the optimal<br />

approximation G(s) of order one, by using other numerical methods, see [89]. The<br />

globally optimal H 2 -approximation of order one obtained in that way, is:<br />

G(s) = −3.1894<br />

(11.77)<br />

0.174884 + s<br />

which has one pole located at −0.174884.<br />

This system G(s) is the approximation one also wants <strong>to</strong> compute with the approach<br />

described in this chapter using the Stetter-Möller matrix method and the<br />

Kronecker canonical form techniques for two-parameter pencils.<br />

The system of quadratic equations (11.1) corresponding <strong>to</strong> the given transfer function<br />

H(s) of order four, is given by:<br />

⎛<br />

1+δ 1 ρ 1<br />

⎞<br />

+δ1 2 ρ 2<br />

e(δ 1<br />

x 2 ⎛ ⎞ ⎛ ⎞<br />

) 1<br />

x 1 0<br />

1+δ 2 ρ 1 +δ2 2 ρ 2<br />

e(δ 2<br />

x 2 ) 2<br />

x 2<br />

0<br />

1+δ<br />

⎜ 3 ρ 1 +δ3 2 − M(δ 1 ,δ 2 ,δ 3 ,δ 4 )<br />

=<br />

(11.78)<br />

ρ 2<br />

⎝ e(δ 3<br />

x 2 ) 3<br />

⎟<br />

⎜<br />

⎠<br />

⎝<br />

x 3<br />

⎟ ⎜<br />

⎠ ⎝<br />

0 ⎟<br />

⎠<br />

0<br />

1+δ 4 ρ 1 +δ 2 4 ρ 2<br />

e(δ 4 )<br />

x 2 4<br />

with the matrix M(δ 1 ,δ 2 ,δ 3 ,δ 4 ) as before. The constraints ã N−1 and ã N−2 , as defined<br />

in (11.2), take the form:<br />

⎧<br />

⎨<br />

⎩<br />

ã N−1 =(− 6480<br />

2977 + 7380<br />

2977 i)x 1 − ( 6480<br />

2977 + 7380<br />

2977 i)x 2 + 3375<br />

229 x 3 − 135<br />

13 x 4 =0<br />

ã N−2 =( 6678<br />

2977 − 15048<br />

2977 i)x 1 +( 6678<br />

2977 + 15048<br />

2977 i)x 2 − 5625<br />

229 x 3 + 261<br />

13 x 4 =0.<br />

x 4<br />

(11.79)<br />

In order <strong>to</strong> find the solutions of the quadratic system of equations (11.78), which<br />

also satisfy both the linear constraints (11.79), the matrices AãN−1 (ρ 1 ,ρ 2 ) T and

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!