20.05.2014 Views

link to my thesis

link to my thesis

link to my thesis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

50 CHAPTER 4. GLOBAL OPTIMIZATION OF MULTIVARIATE POLYNOMIALS<br />

discarded because it is of no interest in this application.<br />

The matrix A T p 1(x 1,x 2)<br />

can be constructed using the same monomial basis B and<br />

quotient space R[x 1 ,x 2 ]/I as introduced above. This yields the 9×9 matrix A T p :<br />

1(x 1,x 2)<br />

⎛<br />

0 − 1 13<br />

4 16<br />

− 3<br />

⎞<br />

3<br />

16 2<br />

0 0 0 0<br />

0 − 13<br />

16<br />

− 55<br />

64<br />

− 39<br />

64<br />

− 3 3<br />

16 2<br />

0 0 0<br />

55<br />

0<br />

64<br />

− 43 165<br />

256 256<br />

− 135<br />

64<br />

− 21<br />

16<br />

− 9 8<br />

0 0<br />

0 0 0 0 − 1 13<br />

4 16<br />

− 3 3<br />

16 2<br />

0<br />

0 0 0 0 − 13<br />

16<br />

− 55<br />

64<br />

− 39<br />

64<br />

− 3 3<br />

16 2<br />

. (4.11)<br />

27<br />

55<br />

0 32<br />

0 0<br />

64<br />

− 43 165<br />

256 256<br />

− 135<br />

64<br />

− 21<br />

16<br />

9<br />

0<br />

64<br />

− 9 8<br />

0 0 0 0 − 1 13<br />

4 16<br />

⎜ 405 63 27<br />

⎝<br />

0<br />

256 64 32<br />

0 0 0 − 13<br />

16<br />

− 55 ⎟<br />

64 ⎠<br />

0 − 1503<br />

1024<br />

27<br />

32<br />

− 189<br />

256<br />

27<br />

32<br />

0 0<br />

55<br />

64<br />

− 43<br />

256<br />

The real eigenvalues of the matrix A T p 1(x 1,x 2)<br />

are computed as −0.402778, −0.201376,<br />

0. The smallest one of these is the global minimum and its location can be read<br />

off from the corresponding eigenvec<strong>to</strong>r. This (normalized) eigenvec<strong>to</strong>r is computed<br />

as (1, −0.631899, 0.399297, 0.779656, −0.492664, 0.311314, 0.607864, −0.384108,<br />

0.242718) T and has the same structure as the monomial basis B. The value of the x 1<br />

coordinate can be read off from the eigenvec<strong>to</strong>r as it is the second element, −0.631899,<br />

and the value of the x 2 coordinate can be read off as the fourth element, 0.779656.<br />

This approach allows for computing the global minimum and its minimizer at once<br />

without explicitly constructing the matrices A T x 1<br />

and A T x 2<br />

and without performing<br />

eigenvalue/eigenvec<strong>to</strong>r computations on each of them.<br />

As a final check, a local optimization technique, steepest descent, is applied <strong>to</strong><br />

the polynomial p 1 (x 1 ,x 2 ) from the starting locations (0.4, −0.6) and (−0.6, 0.8). The<br />

first starting location results in a minimum at (0.3468, −0.6384) with criterion value<br />

−0.2014. The second starting location results in a minimum at (−0.6319, 0.7797)<br />

with criterion value −0.4028. The latter of these two values has the lowest criterion<br />

value and matches the location and value found by both eigenvalue approaches.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!