12.11.2014 Views

Introductory Physics Volume Two

Introductory Physics Volume Two

Introductory Physics Volume Two

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

40 Electric Potential 2.1<br />

so that<br />

∫ B<br />

∆V = −<br />

= −<br />

= −<br />

= −α<br />

= −α<br />

= −α<br />

A<br />

∫ 1<br />

0<br />

∫ 1<br />

0<br />

∫ 1<br />

0<br />

∫ 1<br />

0<br />

∫ 1<br />

0<br />

= −αab 2<br />

⃗E · ⃗dr<br />

⃗E(⃗r(t)) · d⃗r<br />

dt dt<br />

α [ y 2 î + 2xyĵ ] · [aî + bĵ] dt<br />

[ (bt)2î + 2(at)(bt)ĵ ] · [aî + bĵ] dt<br />

[<br />

(bt) 2 a + 2(at)(bt)b ] dt<br />

3ab 2 t 2 dt<br />

In general, to compute a line integral, one must first find a parameterization<br />

of the path.<br />

The following theorem gives a way of finding the electric field if<br />

the electric potential field is already know.<br />

Theorem: Electric Field from the Electric Potential<br />

[<br />

⃗E = −∇V ⃗ ∂V<br />

= −<br />

∂x î + ∂V<br />

∂y ĵ + ∂V ]<br />

∂z ˆk<br />

The symbol ⃗ ∇ represents the gradient operator ∂<br />

Thus the expression ⃗ ∇f is equal to ∂f<br />

∂x î + ∂f<br />

∂y ĵ + ∂f<br />

∂z ˆk.<br />

∂xî + ∂<br />

∂y ĵ + ∂ ∂z ˆk.<br />

Example<br />

The nonuniform electric field, ⃗ E = αy 2 î + 2αxyĵ, that we used in the<br />

previous example, has the electric potential V = −αxy 2 . Let us check<br />

the above theorem.<br />

⃗E = − ⃗ ∇V<br />

= ∂<br />

∂x αxy2 î + ∂ ∂y αxy2 ĵ + ∂ ∂z αxy2ˆk<br />

= αy 2 î + 2αxy ĵ + 0 ˆk OK

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!