31.01.2015 Views

Woo Young Lee Lecture Notes on Operator Theory

Woo Young Lee Lecture Notes on Operator Theory

Woo Young Lee Lecture Notes on Operator Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CHAPTER 4.<br />

WEIGHTED SHIFTS<br />

Proof. [T ∗ , T] ≥ 0 ⇐⇒<br />

Thus<br />

[T ∗ , T ∗ ] ≥ 0 ⇐⇒<br />

⟨ ( x<br />

[T ∗ , T ∗ ]<br />

ty<br />

) ( x<br />

,<br />

ty<br />

⟨[ [T<br />

∗<br />

1 , T 1 ] [T ∗ 2 , T 1 ]<br />

[T ∗ 1 , T 2 ] [T ∗ 2 , T 2 ]] ( x<br />

ty<br />

)⟩<br />

≥ 0 for any x, y ∈ H and t ∈ R.<br />

) ( x<br />

,<br />

ty<br />

)⟩<br />

≥ 0<br />

⇐⇒⟨[T ∗ 1 , T 1 ]x, x⟩ + t 2 ⟨[T ∗ 2 , T 2 ]y, y⟩ + 2tRe ⟨[T ∗ 2 , T 1 ]y, x⟩ ≥ 0 (†)<br />

C<strong>on</strong>versely if (*) holds then<br />

which implies (†) holds.<br />

=⇒If T 1 and T 2 are hyp<strong>on</strong>ormal then<br />

t 2 ⟨[T ∗ 2 , T 2 ]y, y⟩ + 2t ∣ ∣⟨[T ∗ 2 , T 1 ]y, x⟩ ∣ ∣ + ⟨[T ∗ 1 , T 1 ]x, x⟩ ≥ 0<br />

=⇒D/4 ≡ |⟨[T ∗ 2 , T 1 ]y, x⟩| 2 − ⟨[T ∗ 1 , T 1 ]x, x⟩⟨[T ∗ 2 , T 2 ]y, y⟩ ≤ 0<br />

=⇒ ∣ ∣⟨[T ∗ 2 , T 1 ]y, x⟩ ∣ ∣ 2 ≤ ⟨[T ∗ 1 , T 1 ]x, x⟩⟨[T ∗ 2 , T 2 ]y, y⟩ (∗)<br />

Re ⟨[T ∗ 2 , T 1 ]y, x⟩ 2 ≤ ⟨[T ∗ 1 , T 1 ]x, x⟩⟨[T ∗ 2 , T 2 ]y, y⟩,<br />

Corollary 4.2.3. Let T = (T 1 , T 2 ) be a pair of operators <strong>on</strong> H. Then T is hyp<strong>on</strong>ormal<br />

if and <strong>on</strong>ly if T 1 and T 2 are hyp<strong>on</strong>ormal and<br />

[T2 ∗ , T 1 ] = [T1 ∗ , T 1 ] 1 2 D[T<br />

∗<br />

2 , T 2 ] 1 2<br />

for some c<strong>on</strong>tracti<strong>on</strong> D.<br />

Proof. This follows from a theorem of Smul’jan [Smu]:<br />

[ ] A B<br />

B ∗ ≥ 0 ⇐⇒ A ≥ 0, C ≥ 0 and B = √ AD √ C for some c<strong>on</strong>tracti<strong>on</strong> D.<br />

C<br />

Corollary 4.2.4. Let T ≡ W α be a weighted shift with weight sequence α :<br />

α 1 ≤ α 2 ≤ · · · . Then the following are equivalent:<br />

α 0 ≤<br />

(i) T is 2-hyp<strong>on</strong>ormal;<br />

(<br />

(ii) αn+1 2 α<br />

2<br />

n+2 − αn) 2 2 ( (<br />

≤ α<br />

2<br />

n+1 − αn) 2 α<br />

2<br />

n+2 αn+3 2 − αnαn+1) 2 2 for any n ≥ 0;<br />

(<br />

(iii) αn 2 α<br />

2<br />

n+2 − αn+1) 2 2 ( (<br />

≤ α<br />

2<br />

n+2 α<br />

2<br />

n+1 − αn) 2 α<br />

2<br />

n+3 − αn+2) 2 for any n ≥ 0.<br />

Proof. By Corollary 4.2.3,<br />

(T, T 2 ) hyp<strong>on</strong>ormal ⇐⇒ [T ∗2 , T ] = [T ∗ , T ] 1 2 E[T ∗2 , T 2 ] 1 2 for some c<strong>on</strong>tracti<strong>on</strong> E.<br />

111

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!