31.01.2015 Views

Woo Young Lee Lecture Notes on Operator Theory

Woo Young Lee Lecture Notes on Operator Theory

Woo Young Lee Lecture Notes on Operator Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 4.<br />

WEIGHTED SHIFTS<br />

Lemma 4.5.1. ([CuF2, Propositi<strong>on</strong>s 2.3, 2.6, and 2.7]) Let A, B ∈ M n (C), Ã, ˜B ∈<br />

M n+1 (C) (n ≥ 1) be such that<br />

[ [ ]<br />

A ∗ ∗ ∗<br />

à = and ˜B = .<br />

∗]<br />

∗ B<br />

Then we have:<br />

(i) If A ≥ 0 and if à is a flat extensi<strong>on</strong> of A (i.e., rank(Ã) = rank(A)) then à ≥ 0;<br />

(ii) If A ≥ 0 and à ≥ 0 then det(A) = 0 implies det(Ã) = 0;<br />

(iii) If B ≥ 0 and ˜B ≥ 0 then det(B) = 0 implies det( ˜B) = 0.<br />

Lemma 4.5.2. If α ≡ (α 0 , · · · , α k ) ∧ then<br />

W α is subnormal ⇐⇒ W α is ([ k ] + 1)-hyp<strong>on</strong>ormal. (4.26)<br />

2<br />

In the cases where W α is subnormal and i := rank(α), then we have that α =<br />

(α 0 , · · · , α 2i−2 ) ∧ .<br />

Proof. We <strong>on</strong>ly need to establish the sufficiency c<strong>on</strong>diti<strong>on</strong> in (4.26). Let i := rank(α).<br />

Since W α is i-recursive, [CuF3, Propositi<strong>on</strong> 5.15] implies the subnormality of W α<br />

follows after we verify that A(0, i − 1) ≥ 0 and A(1, i − 1) ≥ 0. Now observe that<br />

i − 1 ≤ [ k 2 ] + 1 and A(j, [ k [ A(j, i − 1)<br />

2 ] + 1) = ∗<br />

] ∗<br />

∗<br />

(j = 0, 1),<br />

so the positivity of A(0, i − 1) and A(1, i − 1) is a c<strong>on</strong>sequence of the positivity<br />

of the ([ k 2 ] + 1)-hyp<strong>on</strong>ormality of W α. For the sec<strong>on</strong>d asserti<strong>on</strong>, observe that if<br />

i := rank(α) then det A(n, i) = 0 for all n ≥ 0. By assumpti<strong>on</strong> A(n, i + 1) ≥ 0,<br />

so by Lemma 4.5.1 (ii) we have det A(n, i + 1) = 0, which says that (α 0 , · · · , α 2i−1 ) ⊂<br />

(α 0 , · · · , α 2i−2 ) ∧ . By iterati<strong>on</strong> we obtain (α 0 , · · · , α k ) ⊂ (α 0 , · · · , α 2i−2 ) ∧ , and therefore<br />

(α 0 , · · · , α k ) ∧ = (α 0 , · · · , α 2i−2 ) ∧ . This proves the lemma.<br />

In what follows, and for notati<strong>on</strong>al c<strong>on</strong>venience, we shall set x −j := α j (0 ≤ j ≤ k).<br />

Theorem 4.5.3. (Subnormality Criteri<strong>on</strong>) If α : x n , · · · , x 1 , (α 0 , · · · , α k ) ∧ then<br />

{<br />

W α is ([ k+1<br />

W α is subnormal ⇐⇒<br />

2<br />

] + 1)-hyp<strong>on</strong>ormal (n = 1)<br />

W α is ([ k+1<br />

2 ] + 2)-hyp<strong>on</strong>ormal (n > 1). (4.27)<br />

Furthermore, in the cases where the above equivalence holds, if rank(α 0 , · · · , α k ) = i<br />

then<br />

{<br />

W α is i-hyp<strong>on</strong>ormal (n = 1)<br />

W α is subnormal ⇐⇒<br />

(4.28)<br />

W α is (i + 1)-hyp<strong>on</strong>ormal (n > 1).<br />

139

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!