31.01.2015 Views

Woo Young Lee Lecture Notes on Operator Theory

Woo Young Lee Lecture Notes on Operator Theory

Woo Young Lee Lecture Notes on Operator Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

= ∑ j,k<br />

CHAPTER 3.<br />

HYPONORMAL AND SUBNORMAL THEORY<br />

Therefore<br />

∫ ∑<br />

0 ≤<br />

j,k<br />

= ∑ ∫<br />

j,k<br />

h jk (t)t 2(j+k) dµ(t)<br />

t 2(j+k) dµ jk (t)<br />

⟨<br />

S j+k f j , S j+k f k<br />

⟩<br />

,<br />

so (3.4) holds.<br />

Remark. Without loss of generality we may assume that ||S|| < 1. Let K = H ∞ and<br />

let K 0 = the finitely n<strong>on</strong>zero sequences in K. Let<br />

⎡<br />

1 S ∗ S ∗2 ⎤<br />

· · ·<br />

S S ∗ S S ∗2 S · · ·<br />

M =<br />

S 2 S ∗ S 2 S ∗2 S 2 · · ·<br />

⎢<br />

⎣S 3 S ∗ S 3 S ∗2 S 3 · · · ⎥<br />

⎦<br />

. . .<br />

<strong>on</strong> K 0 .<br />

If f = (f 0 , · · · , f n , · · · ) ∈ K 0 then<br />

∑<br />

∥(Mf) j ∥ 2 = ∑<br />

j<br />

j<br />

≤ ∑ j<br />

∥ ∑ ∥∥∥∥<br />

2<br />

S ∗k S j f<br />

∥<br />

k<br />

k<br />

[ ]<br />

∑<br />

∥S∥ k+j ∥f k ∥ 2<br />

k<br />

≤ ∑ j<br />

[ ∑<br />

k<br />

∥S∥ 2k+2j ] [ ∑<br />

k<br />

∥f k ∥<br />

] 2<br />

≤ (1 − ∥S∥ 2 ) −2 ∥f∥ 2 .<br />

Since ∥S∥ < 1, Mf ∈ K and M extends to a bounded operator <strong>on</strong> K. Clearly, M is<br />

hermitian. Note<br />

⟨Mf, f⟩ K = ∑ ⟨S j f k , S k f j ⟩.<br />

j,k<br />

So<br />

(3.3) holds ⇐⇒ M is positive.<br />

[ ] A B<br />

Recall the Smul’jan theorem – if M =<br />

B ∗ (A, C hermitian, A invertible), then<br />

C<br />

M ≥ 0 ⇐⇒ B ∗ A −1 B ≤ C.<br />

91

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!