31.01.2015 Views

Woo Young Lee Lecture Notes on Operator Theory

Woo Young Lee Lecture Notes on Operator Theory

Woo Young Lee Lecture Notes on Operator Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 5.<br />

TOEPLITZ THEORY<br />

where ϕ 1 := d 1 (1 − α 1 z) −1 and d j := (1 − |α j | 2 ) 1 2 . It is well known that {ϕ j } d 1 is an<br />

orth<strong>on</strong>ormal basis for H(θ) (cf. [FF, Theorem X.1.5]). Let φ = g + f ∈ L ∞ , where<br />

g = θb and f = θa for a, b ∈ H(θ) and write<br />

C(φ) := {k ∈ H ∞ : φ − kφ ∈ H ∞ }.<br />

Then k is in C(φ) if and <strong>on</strong>ly if θb − kθa ∈ H 2 , or equivalently,<br />

b − ka ∈ θH 2 . (5.12)<br />

Note that θ (n) (α i ) = 0 for all 0 ≤ n < n i . Thus the c<strong>on</strong>diti<strong>on</strong> (5.12) is equivalent to<br />

the following equati<strong>on</strong>: for all 1 ≤ i ≤ n,<br />

where<br />

⎡ ⎤<br />

k i,0<br />

k i,1<br />

k i,2<br />

⎢ .<br />

⎥<br />

⎣k i,ni<br />

⎦<br />

−2<br />

k i,ni−1<br />

⎡<br />

⎤<br />

a i,0 0 0 0 · · · 0<br />

a i,1 a i,0 0 0 · · · 0<br />

a i,2 a i,1 a i,0 0 · · · 0<br />

=<br />

. . .. . .. . .. . .. . ⎢<br />

⎣<br />

.<br />

a i,ni−2 a .. . ⎥<br />

.. i,ni−3<br />

ai,0 0 ⎦<br />

a i,ni −1 a i,ni −2 . . . a i,2 a i,1 a i,0<br />

k i,j := k(j) (α i )<br />

, a i,j := a(j) (α i )<br />

j!<br />

j!<br />

−1 ⎡<br />

⎢<br />

⎣<br />

b i,0<br />

b i,1<br />

b i,2<br />

. .<br />

b i,ni −2<br />

b i,ni−1<br />

and b i,j := b(j) (α i )<br />

.<br />

j!<br />

⎤<br />

, (5.13)<br />

⎥<br />

⎦<br />

C<strong>on</strong>versely, if k ∈ H ∞ satisfies the equality (5.13) then k must be in C(φ). Thus k<br />

bel<strong>on</strong>gs to C(φ) if and <strong>on</strong>ly if k is a functi<strong>on</strong> in H ∞ for which<br />

k (j) (α i )<br />

j!<br />

= k i,j (1 ≤ i ≤ n, 0 ≤ j < n i ), (5.14)<br />

where the k i,j are determined by the equati<strong>on</strong> (5.13). If in additi<strong>on</strong> ||k|| ∞ ≤ 1 is<br />

required then this is exactly the classical Hermite-Fejér Interpolati<strong>on</strong> Problem (HFIP).<br />

Therefore we have:<br />

Theorem 5.2.9. Let φ = g + f ∈ L ∞ , where f and g are rati<strong>on</strong>al functi<strong>on</strong>s. Then<br />

T φ is hyp<strong>on</strong>ormal if and <strong>on</strong>ly if the corresp<strong>on</strong>ding HFIP (5.14) is solvable.<br />

Now we can summarize that tractable criteria for the hyp<strong>on</strong>ormality of Toeplitz<br />

operators T φ are accomplished for the cases where the symbol φ is a trig<strong>on</strong>ometric<br />

polynomial or a rati<strong>on</strong>al functi<strong>on</strong> via soluti<strong>on</strong>s of some interpolati<strong>on</strong> problems.<br />

We c<strong>on</strong>clude this secti<strong>on</strong> with:<br />

Problem 5.1. Let φ ∈ L ∞ be arbitrary. Find necessary and sufficient c<strong>on</strong>diti<strong>on</strong>s,<br />

in terms of the coefficients of φ, for T φ to be hyp<strong>on</strong>ormal. In particular, for the cases<br />

where φ is of bounded type.<br />

178

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!