31.01.2015 Views

Woo Young Lee Lecture Notes on Operator Theory

Woo Young Lee Lecture Notes on Operator Theory

Woo Young Lee Lecture Notes on Operator Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CHAPTER 5.<br />

TOEPLITZ THEORY<br />

5.3.3 Gaps between k-Hyp<strong>on</strong>ormality and Subnormality<br />

We find gaps between subnormality and k-hyp<strong>on</strong>ormality for Toeplitz operators.<br />

Theorem 5.3.29. [Gu2],[CLL] Let 0 < α < 1 and let ψ be the c<strong>on</strong>formal map of the<br />

unit disk <strong>on</strong>to the interior of the ellipse with vertices ±(1 + α)i and passing through<br />

±(1 − α). Let φ = ψ + λ ¯ψ and let T φ be the corresp<strong>on</strong>ding Toeplitz operator ∣ <strong>on</strong> H 2 .<br />

∣<br />

Then T φ is k-hyp<strong>on</strong>ormal if and <strong>on</strong>ly if λ is in the circle ∣z − α(1−α2j ) ∣∣<br />

1−α =<br />

α j (1−α 2 )<br />

2j+2 1−α ∣ 2j+2<br />

∣<br />

for j = 0, 1, · · · , k − 2 or in the closed disk ∣z − α(1−α2(k−1) ) ∣∣<br />

1−α ≤<br />

α k−1 (1−α 2 )<br />

.<br />

2k 1−α 2k<br />

For 0 < α < 1, let T ≡ W β be the weighted shift with weight sequence β =<br />

{β n } ∞ n=0, where (cf. [Cow2, Propositi<strong>on</strong> 9])<br />

β n := (<br />

n∑<br />

α 2j ) 1 2 for n = 0, 1, · · · . (5.37)<br />

j=0<br />

Let D be the diag<strong>on</strong>al operator, D = diag (α n ), and let S λ ≡ T + λ T ∗ (λ ∈ C). Then<br />

we have that<br />

[T ∗ , T ] = D 2 = diag (α 2n ) and [S ∗ λ, S λ ] = (1 − |λ| 2 )[T ∗ , T ] = (1 − |λ| 2 )D 2 .<br />

Define<br />

A l := α l T + λ α l T ∗ (l = 0, ±1, ±2, · · · ).<br />

It follows that A 0 = S λ and<br />

DA l = A l+1 D and A ∗ l D = DA ∗ l+1 (l = 0, ±1, ±2, · · · ). (5.38)<br />

Theorem 5.3.30. Let 0 < α < 1 and T ≡ W β<br />

sequence β = {β n } ∞ n=0, where<br />

be the weighted shift with weight<br />

β n = (<br />

n∑<br />

α 2j ) 1 2 for n = 0, 1, · · · .<br />

j=0<br />

Then A 0 := T + λT ∗ is k-hyp<strong>on</strong>ormal if and <strong>on</strong>ly if |λ| ≤ α k−1 or |λ| = α j for some<br />

j = 0, 1, · · · , k − 2.<br />

Proof. Observe that<br />

[A ∗ l , A l] = [α l T ∗ + λ α l T, α l T + λ α l T ∗ ]<br />

= α 2l [T ∗ , T ] − |λ|2<br />

α 2l [T ∗ , T ] =<br />

(α 2l − |λ|2<br />

α 2l )<br />

D 2 .<br />

(5.39)<br />

195

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!