31.01.2015 Views

Woo Young Lee Lecture Notes on Operator Theory

Woo Young Lee Lecture Notes on Operator Theory

Woo Young Lee Lecture Notes on Operator Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 4.<br />

WEIGHTED SHIFTS<br />

and, for notati<strong>on</strong>al c<strong>on</strong>venience, α −2 = α −1 = 0. Clearly, W α is quadratically hyp<strong>on</strong>ormal<br />

if and <strong>on</strong>ly if D n (s) ≥ 0 for all s ∈ C and all n ≥ 0. Let d n (·) := det (D n (·)).<br />

Then d n satisfies the following 2–step recursive formula:<br />

d 0 = q 0 , d 1 = q 0 q 1 − |r 0 | 2 , d n+2 = q n+2 d n+1 − |r n+1 | 2 d n .<br />

If we let t := |s| 2 , we observe that d n is a polynomial in t of degree n + 1, and if<br />

we write d n ≡ ∑ n+1<br />

i=0 c(n, i)ti , then the coefficients c(n, i) satisfy a double-indexed<br />

recursive formula, namely<br />

c(n + 2, i) = u n+2 c(n + 1, i) + v n+2 c(n + 1, i − 1) − w n+1 c(n, i − 1),<br />

c(n, 0) = u 0 · · · u n , c(n, n + 1) = v 0 · · · v n , c(1, 1) = u 1 v 0 + v 1 u 0 − w 0<br />

(4.9)<br />

(n ≥ 0, i ≥ 1). We say that W α is positively quadratically hyp<strong>on</strong>ormal if c(n, i) ≥ 0<br />

for every n ≥ 0, 0 ≤ i ≤ n + 1. Evidently, positively quadratically hyp<strong>on</strong>ormal =⇒<br />

quadratically hyp<strong>on</strong>ormal. The c<strong>on</strong>verse, however, is not true in general.<br />

The following theorem establishes a useful relati<strong>on</strong> between 2-hyp<strong>on</strong>ormality and<br />

positive quadratic hyp<strong>on</strong>ormality.<br />

Theorem 4.4.2. Let α ≡ {α n } ∞ n=0 be a weight sequence and assume that W α is 2-<br />

hyp<strong>on</strong>ormal. Then W α is positively quadratically hyp<strong>on</strong>ormal. More precisely, if W α<br />

is 2-hyp<strong>on</strong>ormal then<br />

c(n, i) ≥ v 0 · · · v i−1 u i · · · u n (n ≥ 0, 0 ≤ i ≤ n + 1). (4.10)<br />

In particular, if α is strictly increasing and W α is 2-hyp<strong>on</strong>ormal then the Maclaurin<br />

coefficients of d n (t) are positive for all n ≥ 0.<br />

If W α is a weighted shift with weight sequence α = {α n } ∞ n=0, then the moments<br />

of W α are usually defined by β 0 := 1, β n+1 := α n β n (n ≥ 0); however, we prefer to<br />

reserve this term for the sequence γ n := βn 2 (n ≥ 0). A criteri<strong>on</strong> for k-hyp<strong>on</strong>ormality<br />

can be given in terms of these moments ([Cu2, Theorem 4]): if we build a (k + 1) ×<br />

(k + 1) Hankel matrix A(n; k) by<br />

⎡<br />

⎤<br />

γ n γ n+1 . . . γ n+k<br />

γ n+1 γ n+2 . . . γ n+k+1<br />

A(n; k) := ⎢<br />

⎣<br />

.<br />

.<br />

⎥ (n ≥ 0),<br />

. ⎦<br />

γ n+k γ n+k+1 . . . γ n+2k<br />

then<br />

W α is k-hyp<strong>on</strong>ormal ⇐⇒ A(n; k) ≥ 0 (n ≥ 0). (4.11)<br />

In particular, for α strictly increasing, W α is 2-hyp<strong>on</strong>ormal if and <strong>on</strong>ly if<br />

⎡<br />

⎤<br />

γ n γ n+1 γ n+2<br />

det ⎣γ n+1 γ n+2 γ n+3<br />

⎦ ≥ 0 (n ≥ 0). (4.12)<br />

γ n+2 γ n+3 γ n+4<br />

123

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!