31.01.2015 Views

Woo Young Lee Lecture Notes on Operator Theory

Woo Young Lee Lecture Notes on Operator Theory

Woo Young Lee Lecture Notes on Operator Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CHAPTER 3.<br />

HYPONORMAL AND SUBNORMAL THEORY<br />

Definiti<strong>on</strong> 3.3.9. If S is a subnormal operator <strong>on</strong> H and N is a normal extensi<strong>on</strong><br />

of S to K then N is called a minimal normal extensi<strong>on</strong> of S if<br />

K = ∨ }<br />

{N ∗k h : h ∈ H, k ≥ 0 .<br />

Propositi<strong>on</strong> 3.3.10. If S is a subnormal operator then any two minimal normal<br />

extensi<strong>on</strong>s are unitarily equivalent.<br />

Proof. For p = 1, 2 let N p be a minimal normal extensi<strong>on</strong> of S acting <strong>on</strong> K p ⊇ H.<br />

Define U : K 1 −→ K 2 by<br />

U (N ∗ 1 n h) = N ∗ 2 n h (h ∈ H).<br />

We want to show that U is an isomorphism. If h 1 , · · · , h m ∈ H and n 1 , · · · , n m ≥ 0<br />

then<br />

∥ ∑ ∥∥∥∥<br />

2 ⟨ N2<br />

∗ n ∑<br />

k<br />

h<br />

∥<br />

k = N ∗ n k<br />

2 h k , ∑ ⟩<br />

N ∗ n j<br />

2 h j<br />

k<br />

k<br />

j<br />

= ∑ j,k<br />

⟨N 2<br />

n j<br />

h k , N 2<br />

n k<br />

h j ⟩<br />

= ∑ j,k<br />

= ∑ j,k<br />

⟨S n j<br />

h k , S n k<br />

h j ⟩<br />

⟨N 1<br />

n j<br />

h k , N 1<br />

n k<br />

h j ⟩<br />

∥ ∑ ∥∥∥∥<br />

2<br />

=<br />

N1<br />

∗ n k<br />

h<br />

∥<br />

k ,<br />

k<br />

which shows that<br />

U<br />

]<br />

N1<br />

∗ n k<br />

h k = ∑ k<br />

N ∗ 2<br />

n k<br />

h k<br />

[ ∑<br />

k<br />

is a well defined linear operator from a dense linear manifold in K 1 <strong>on</strong>to a dense linear<br />

manifold in K 2 and U is an isometry. Also for all h ∈ H, Uh = h. Thus for h ∈ H<br />

and n ≥ 0,<br />

UN 1 N ∗ 1 n h = UN ∗ 1 n Sh = N ∗ 2 n Sh = N 2 N ∗ 2 n h = N 2 UN ∗ 1 n h,<br />

i.e., UN 1 = N 2 U, so that N 1 and N 2 are unitarily equivalent.<br />

Now it is legitimate to speak of the minimal normal extensi<strong>on</strong> of a subnormal<br />

operator. Therefore it is unambiguous to define the normal spectrum of a subnormal<br />

operator S, σ n (S), as the spectrum of its minimal normal extensi<strong>on</strong>.<br />

93

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!