31.01.2015 Views

Woo Young Lee Lecture Notes on Operator Theory

Woo Young Lee Lecture Notes on Operator Theory

Woo Young Lee Lecture Notes on Operator Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 4.<br />

WEIGHTED SHIFTS<br />

(iii)<br />

α 2 n<br />

α 2 n+2<br />

u n+2<br />

u n+3<br />

≤ un+1<br />

u n+2<br />

(n ≥ 0);<br />

(iv)<br />

p n ≥ 0 (n ≥ 0).<br />

Proof. This follows from a straightforward calculati<strong>on</strong>.<br />

We are ready for:<br />

Proof of Theorem 4.4.2. If α is not strictly increasing then α is flat, by the argument<br />

of [Cu2, Corollary 6], i.e., α 0 = α 1 = α 2 = · · · . Then<br />

[ ]<br />

α<br />

2<br />

D n (s) = 0 + |s| 2 α0 4 ¯sα0<br />

3<br />

sα0 3 |s| 2 α0<br />

4 ⊕ 0 ∞<br />

(cf. (4.7)), so that (4.10) is evident. Thus we may assume that α is strictly increasing,<br />

so that u n > 0, v n > 0 and w n > 0 for all n ≥ 0. Recall that if we write d n (t) :=<br />

∑ n+1<br />

i=0 c(n, i)ti then the c(n, i)’s satisfy the following recursive formulas (cf. (4.9)):<br />

c(n+2, i) = u n+2 c(n+1, i)+v n+2 c(n+1, i−1)−w n+1 c(n, i−1) (n ≥ 0, 1 ≤ i ≤ n).<br />

(4.14)<br />

Also, c(n, n + 1) = v 0 · · · v n (again by (4.9) and p n := u n v n+1 − w n ≥ 0 (n ≥ 0), by<br />

Lemma 4.4.6. A straightforward calculati<strong>on</strong> shows that<br />

d 0 (t) = u 0 + v 0 t;<br />

d 1 (t) = u 0 u 1 + (v 0 u 1 + p 0 ) t + v 0 v 1 t 2 ;<br />

d 2 (t) = u 0 u 1 u 2 + (v 0 u 1 u 2 + u 0 p 1 + u 2 p 0 ) t + (v 0 v 1 u 2 + v 0 p 1 + v 2 p 0 ) t 2 + v 0 v 1 v 2 t 3 .<br />

(4.15)<br />

Evidently,<br />

c(n, i) ≥ 0 (0 ≤ n ≤ 2, 0 ≤ i ≤ n + 1). (4.16)<br />

Define<br />

β(n, i) := c(n, i) − v 0 · · · v i−1 u i · · · u n<br />

(n ≥ 1, 1 ≤ i ≤ n).<br />

For every n ≥ 1, we now have<br />

⎧<br />

⎪⎨ u 0 · · · u n ≥ 0 (i = 0)<br />

c(n, i) = v 0 · · · v i−1 u i · · · u n + β(n, i) (1 ≤ i ≤ n)<br />

⎪⎩<br />

v 0 · · · v n ≥ 0 (i = n + 1).<br />

For notati<strong>on</strong>al c<strong>on</strong>venience we let β(n, 0) := 0 for every n ≥ 0.<br />

Claim 1. For n ≥ 1,<br />

c(n, n) ≥ u n c(n − 1, n) ≥ 0.<br />

(4.17)<br />

Proof of Claim 1. We use mathematical inducti<strong>on</strong>. For n = 1,<br />

c(1, 1) = v 0 u 1 + p 0 ≥ u 1 c(0, 1) ≥ 0,<br />

127

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!