08.06.2021 Views

VGB POWERTECH 5 (2021) - International Journal for Generation and Storage of Electricity and Heat

VGB PowerTech - International Journal for Generation and Storage of Electricity and Heat. Issue 5 (2021). Technical Journal of the VGB PowerTech Association. Energy is us! Nuclear power. Nuclear power plants - operation and operation experiences

VGB PowerTech - International Journal for Generation and Storage of Electricity and Heat. Issue 5 (2021).
Technical Journal of the VGB PowerTech Association. Energy is us!
Nuclear power. Nuclear power plants - operation and operation experiences

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Residual <strong>Heat</strong> Removal Line (Redundancy)<br />

<strong>VGB</strong> PowerTech 5 l <strong>2021</strong><br />

Safety-related residual heat removal chains <strong>for</strong> pressure water reactors<br />

Development <strong>of</strong> safety-related residual<br />

heat removal chains from german<br />

technology pressure water reactors<br />

(light <strong>and</strong> heavy water)<br />

Franz Stuhlmüller <strong>and</strong> Rafael Macián-Juan<br />

Kurzfassung<br />

Entwicklung von sicherheitstechnischen<br />

Nachwärmeabfuhrpfaden für<br />

Druckwasserreaktoren deutscher<br />

Technologie (Leicht- und Schwerwasser)<br />

Die auf Entwicklungen in Deutschl<strong>and</strong> basierenden<br />

Druckwasserreaktor-KKW für angereicherten<br />

Brennst<strong>of</strong>f (PLWR) einerseits und für<br />

Natururan (PHWR) <strong>and</strong>ererseits sind in ihrer<br />

Basiskonzeption weitgehend identisch. Ein<br />

markanter Unterschied besteht jedoch im Umfang<br />

der Reaktorhauptsysteme. Während diese<br />

beim PLWR nur aus dem Reaktorkühl- und dessen<br />

Druckhalte- und Abblasesystem bestehen,<br />

kommt beim PHWR noch das Moderatorsystem<br />

hinzu, das im Leistungsbetrieb der Anlage den<br />

Moderator (Schwerwasser) permanent zu kühlen<br />

hat. Dieses verfahrenstechnische System<br />

wird in Zweitfunktion als innerstes Glied der<br />

sicherheitstechnisch wichtigen Nachkühlkette<br />

zur Wärmeabfuhr nach dem Abschalten des Reaktors<br />

verwendet. Während man beim PLWR –<br />

auch für die neuesten Anlagen – sowohl zum<br />

Abkühlen nach planmäßiger Abschaltung als<br />

auch zur Beherrschung der überwiegenden<br />

Zahl anzunehmender Störfalle in der ersten<br />

Zeit nach Schadenseintritt auf die weitere Bespeisung<br />

der Dampferzeuger angewiesen ist,<br />

wurde für den PHWR die Möglichkeit geschaffen,<br />

die Reaktorkühlung von Anfang an allein<br />

über die Nachkühlkette durchzuführen.<br />

Anh<strong>and</strong> der Statusprojekte beider Kraftwerkslinien<br />

dokumentieren sich nicht nur deren Einheitengrößen-Wachstum,<br />

sondern auch die<br />

Entwicklungs-Schritte ihrer Nachkühlketten-<br />

Technologie, die hier aufgezeigt wird. l<br />

Authors<br />

Franz Stuhlmüller<br />

External Scientific Associate at the Chair <strong>for</strong><br />

Nuclear Technology<br />

Technical University <strong>of</strong> Munich<br />

Pr<strong>of</strong>. Rafael Macián-Juan, PhD<br />

Head <strong>of</strong> the Chair <strong>of</strong> Nuclear Technology<br />

Technical University <strong>of</strong> Munich<br />

Munich, Germany<br />

Development <strong>of</strong> Safety-related Residual <strong>Heat</strong><br />

Removal Chains from German Technology<br />

Pressure Water Reactors I Franz Stuhlmüller<br />

Introduction<br />

The Nuclear Power Plants (NPPs) with<br />

Pressure Water Reactor <strong>for</strong> enriched fuel<br />

(PLWR, Pressurized Light Water Reactor)<br />

<strong>and</strong> <strong>for</strong> natural uranium (PHWR, Pressurized<br />

Heavy Water Reactor), developed in<br />

Germany, are largely identical in their basic<br />

design. However, there is a striking difference<br />

in the scope <strong>of</strong> the main reactor<br />

systems. While in PLWR these only consist<br />

<strong>of</strong> Reactor <strong>and</strong> Reactor Coolant System including<br />

Pressurizer <strong>and</strong> Pressurizer Relief<br />

Tank, in PHWR the Moderator System is<br />

added. In power operation <strong>of</strong> a PLWR, the<br />

entire thermal reactor power is transferred<br />

to the water/steam cycle via the Steam<br />

Generators. In PHWR, on the other h<strong>and</strong>,<br />

part <strong>of</strong> the power (approx. 10 %) has to be<br />

removed – at a lower temperature level –<br />

from the moderator, which is spatially separated<br />

from the main reactor coolant within<br />

the Reactor Pressure Vessel, but is kept<br />

at the same pressure via function-related<br />

Reactor<br />

2 1 1 1 1<br />

2 2 2<br />

3 3 3 3<br />

4 4 4 4<br />

5 5 5 5<br />

<strong>Heat</strong> Sink<br />

compensating openings. This portion <strong>of</strong><br />

power is used to preheat the feed water be<strong>for</strong>e<br />

it enters the Steam Generators. The<br />

Moderator System installed <strong>for</strong> this purpose<br />

can also be used in a second function<br />

as the inner link in the Residual <strong>Heat</strong> Removal<br />

Chain (RHRC) <strong>for</strong> cooling the reactor<br />

after it has been switched <strong>of</strong>f. In PLWR<br />

the analog system is operated exclusively<br />

<strong>for</strong> the removal <strong>of</strong> residual heat from the<br />

reactor <strong>and</strong>, if necessary, the fuel pool. In<br />

the following, the development <strong>of</strong> the<br />

RHRC <strong>of</strong> both NPP lines is shown <strong>and</strong> the<br />

main differences between both NPP-types<br />

in this regard are explained by comparing<br />

the most recently erected plants, DWR<br />

1,300 MW (KONVOI) <strong>and</strong> Atucha 2.<br />

Residual heat removal chain,<br />

structure <strong>and</strong> terms<br />

F i g u r e 1 shows the basic structure <strong>of</strong> the<br />

three-part RHRC using the example <strong>of</strong> a<br />

plant with four cooling lines, as is the case<br />

Residual <strong>Heat</strong> Removal Chain<br />

1<br />

2<br />

3<br />

4<br />

5<br />

Residual <strong>Heat</strong> Removal Pump/<br />

Moderator Pump<br />

Residual <strong>Heat</strong> Exchanger/<br />

Moderator Cooler<br />

Component CoolingPump/<br />

RHR Intermediate Cooling Pump<br />

Component Cooling<br />

<strong>Heat</strong> Exchanger/<br />

RHR Intermediate Cooling<br />

<strong>Heat</strong> Exchanger<br />

Secured Service Cooling<br />

Water Pump<br />

Fig. 1. Residual <strong>Heat</strong> Removal from the Reactor; Definition <strong>of</strong> “System” (or “RHR link”),<br />

“Sub-System”, “RHR Line” <strong>and</strong> “RHR Chain”.<br />

49

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!