17.01.2013 Views

PDF (1016 kB)

PDF (1016 kB)

PDF (1016 kB)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.12. Proposition. For a generic choice of H1 and H2, M Υ GE (x1, x2; z) - if non-empty - is a<br />

manifold of dimension<br />

dimM Υ GE(x1, x2; z) = µ Λ (x1) + µ Λ (x2) − µ Λ (z) − n + 1.<br />

The projection (α, u) ↦→ α is smooth on M Υ GE (x1, x2; z). These manifolds carry coherent orientations.<br />

Energy estimates together with (H1) and (H2) again imply compactness. When µ Λ (z) =<br />

µ Λ (x1)+µ Λ (x2)−n+1, M Υ GE (x1, x2; z) is a finite set of oriented points. Denoting by nΥ GE (x1, x2; z)<br />

the algebraic sum of the corresponding orientation signs, we define the homomorphism<br />

P Υ GE : F Λ h (H1) ⊗ F Λ k (H2) → F Λ h+k−n+1 (H1#H2), x1 ⊗ x2 ↦→ �<br />

n Υ GE (x1, x2; z)z.<br />

Then Theorem 3.11 follows from the following:<br />

z∈P Λ (H1#H2)<br />

µ Λ (z)=h+k−n+1<br />

3.13. Proposition. The homomorphism P Υ GE is a chain homotopy between ΥΛ and G ◦ E.<br />

The proof of the above result is contained in section 6.3.<br />

3.6 The homomorphisms C, Ev, and I!<br />

Let us define the Floer homological counterparts of the the homomorphisms<br />

c∗ : Hk(M) → Hk(Λ(M)), ev∗ : Hk(Λ(M)) → Hk(M).<br />

Let f be a smooth Morse function on M, and assume that the vector field −gradf satisfies the<br />

Morse-Smale condition. Let H ∈ C ∞ (Ì×T ∗ M) be a Hamiltonian satisfying (H0) Λ , (H1), (H2).<br />

We shall define two chain maps<br />

C : Mk(f, 〈·, ·〉) → Fk(H, J), Ev : Fk(H, J) → Mk(f, 〈·, ·〉).<br />

Given x ∈ crit(f) and y ∈ PΛ (H), consider the following spaces of maps<br />

�<br />

MC(x, y) = u ∈ C ∞ ([0, +∞[×Ì, T ∗ �<br />

�<br />

M) �∂J,H(u) = 0, π ◦ u(0, t) ≡ q ∈ W u (x) ∀t ∈Ì,<br />

lim u(s, t) = y(t) uniformly in t ∈Ì�<br />

,<br />

s→+∞<br />

and<br />

�<br />

MEv(y, x) = u ∈ C ∞ (] − ∞, 0] ×Ì, T ∗ �<br />

�<br />

M) �∂J,H(u) = 0, u(0, t) ∈ÇM ∀t ∈Ì,<br />

u(0, 0) ∈ W s (x), lim u(s, t) = y(t) uniformly in t ∈Ì�<br />

,<br />

s→−∞<br />

whereÇM denotes the zero section in T ∗ M.<br />

The following result is proved in section 5.10.<br />

3.14. Proposition. For a generic choice of H, MC(x, y) and MEv(y, x) are manifolds with<br />

dimMC(x, y) = m(x) − µ Λ (y), MEv(y, x) = µ Λ (y) − m(x).<br />

These manifolds carry coherent orientations.<br />

If u belongs to MC(x, y) or MEv(y, x), the fact that u(0, ·) takes value either on the fiber of<br />

some point q ∈ M or on the zero section of T ∗M implies that<br />

�H(u(0, ·)) = −<br />

� 1<br />

0<br />

36<br />

H(t, u(0, t))dt.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!