17.01.2013 Views

PDF (1016 kB)

PDF (1016 kB)

PDF (1016 kB)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The space M Υ GE . Let x1 ∈ P(H1), x2 ∈ P(H2), and z ∈ PΛ (H1#H2) (see the proof of<br />

Theorem 3.11). The space M Υ GE (x1, x2; z) is the set of pairs (α, u) where α is a real positive<br />

parameter and u is a solution of the Floer equation on the Riemann surface ΣΥ GE (α) with suitable<br />

asymptotics and suitable non-local boundary conditions. Linearizing this Floer equation for a<br />

fixed α ∈]0, +∞[ yields an operator of the form<br />

where<br />

∂A : X 1,p<br />

S ,W (Σ,�2n ) → X p<br />

S (Σ,�2n ),<br />

S = {−α, α, −α + i, α + i}, W = (∆Ê2n, ∆ ΘÊn, ∆Ên × ∆Ên).<br />

By Theorem 5.23 this operator is Fredholm of index<br />

ind∂A = µ(N ∗ ∆Ê2n, graphCΦ − ) − µ(N ∗ (∆Ên × ∆Ên), graphCΦ + ) − n.<br />

As in the discussion of M Λ Υ<br />

(identities (136) and (137)),<br />

µ(N ∗ ∆Ê2n, graphCΦ − ) = µ Λ (x1) + µ Λ (x2), µ(N ∗ (∆Ên × ∆Ên), graphCΦ + ) = µ Λ (z).<br />

Therefore,<br />

ind ∂A = µ Λ (x1) + µ Λ (x2) − µ Λ (z) − n.<br />

Considering also the parameter α, we see that for a generic choice of J the space M Υ GE (x1, x2; z)<br />

is a smooth manifold of dimension µ Λ (x1)+µ Λ (x2) −µ Λ (z) −n+1. This proves Proposition 3.12.<br />

The spaces MC and MEv. Let f be a Morse function on M, let x be a critical point of f, and<br />

let y ∈ P(Λ)(H). Given q ∈ M, let<br />

�<br />

�MC(x, y, q) := u ∈ C ∞ ([0, +∞[×Ì, T ∗ �<br />

�<br />

M) �u solves (32), π ◦ u(0, t) ≡ q ∀t ∈Ì,<br />

lim u(s, t) = y(t) uniformly in t ∈Ì�<br />

.<br />

s→+∞<br />

The study of such a space involves the study of an operator of the form<br />

∂A : X 1,p<br />

∅,(0),(∆Ên) (Σ+ ,�n ) → X p<br />

∅ (Σ+ ,�n ).<br />

By Theorem 5.24, the Fredholm index of the above operator is<br />

Therefore, the space<br />

has dimension<br />

ind∂A = n<br />

2 − µ(N ∗ ∆Ên, graphCΦ + ) − n<br />

2 = −µΛ (y).<br />

MC(x, y) = �<br />

q∈W u (x)<br />

�MC(x, y, q),<br />

dimMC(x, y) = dimW u (x) − µ Λ (y) = m(x) − µ Λ (y),<br />

for a generic choice of J and g, proving the first part of Proposition 3.14.<br />

Consider the space of maps<br />

�<br />

�MEv(y) := u ∈ C ∞ (] − ∞, 0] ×Ì, T ∗ �<br />

�<br />

M) �u solves (32), u(0, t) ∈ÇM ∀t ∈Ì,<br />

lim u(s, t) = y(t) uniformly in t ∈Ì�<br />

.<br />

s→−∞<br />

84

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!