17.01.2013 Views

PDF (1016 kB)

PDF (1016 kB)

PDF (1016 kB)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

so the transversality hypotheses of Theorem 5.9 are fulfilled. By this theorem, the operator<br />

∂A = G−1 ◦ ∂à ◦ F is Fredholm of index<br />

ind∂A = ind∂ à = µ(˜ Φ − N ∗ W0, N ∗ ∆Ên) − µ( ˜ Φ + N ∗ Wk, N ∗ ∆Ên)<br />

− 1<br />

k�<br />

(dim Wj−1 + dim Wj − 2 dimWj−1 ∩ Wj).<br />

2<br />

j=1<br />

(123)<br />

The symplectic paths t ↦→ Φ ± (1)Φ ± (1 − t/2) −1 Φ ± (t/2) and t ↦→ Φ ± (t) are homotopic by means<br />

of the symplectic homotopy<br />

(λ, t) ↦→ Φ ± (1)Φ ±<br />

�<br />

1 + λ<br />

2<br />

�−1 1 − λ<br />

− t Φ<br />

2<br />

±<br />

� �<br />

1 + λ<br />

t ,<br />

2<br />

which fixes the end-points I and Φ ± (1). By the symplectic invariance and the homotopy invariance<br />

of the Maslov index we deduce from (122) that<br />

Similarly,<br />

µ( ˜ Φ − N ∗ W0, N ∗ ∆Ên) = µ(N ∗ W0, ˜ Φ − (·) −1 N ∗ ∆Ên)<br />

= µ(N ∗ W0, graphCΦ − (1)Φ − (1 − ·/2) −1 Φ − (·/2)) = µ(N ∗ W0, graphCΦ − ).<br />

(124)<br />

µ( ˜ Φ + N ∗ Wk, N ∗ ∆Ên) = µ(N ∗ Wk, graphCΦ + ). (125)<br />

The conclusion follows from (123), (124), and (125).<br />

In the case of the right half-strip Σ + , we fix an integer k ≥ 0, real numbers<br />

0 = s0 < s1 < · · · < sk < sk+1 = +∞,<br />

a linear subspace V0 ⊂Ên and a (k + 1)-uple W = (W0, . . . , Wk) of linear subspaces ofÊn ×Ên ,<br />

such that W0 and V0 ×V0 are partially orthogonal, and so are Wj−1 and Wj, for every j = 1, . . .,k.<br />

Set S = {s1, . . . , sk, s1 + i, . . .,sk + i}, and let X 1,p<br />

S ,V0,W (Σ+ ,�n ) be the completion of the space<br />

of maps u ∈ C ∞ S ,c (Σ+ ,�n ) such that<br />

u(it) ∈ V0 ∀t ∈ [0, 1], (u(s), u(s + i)) ∈ N ∗ Wj, ∀s ∈ [sj, sj+1], j = 0, . . . , k,<br />

with respect to the norm �u� X 1,p (Σ + ).<br />

Let A ∈ C 0 ([0, +∞] × [0, 1], L(Ê2n ,Ê2n )) be such that A(+∞, t) ∈ Sym(2n,Ê) for every t ∈<br />

[0, 1], and let Φ + : [0, 1] → Sp(2n) be the solution of the linear Hamiltonian systems<br />

Then we have:<br />

d<br />

dt Φ+ (t) = iA(+∞, t)Φ + (t), Φ + (0) = I.<br />

5.24. Theorem. Assume that graphCΦ + (1) ∩ N ∗ Wk = (0). Then for every p ∈]1, +∞[ the<br />

Ê-linear operator<br />

is bounded and Fredholm of index<br />

∂A : X 1,p<br />

S ,V0,W (Σ+ ,�n ) → X p<br />

S (Σ+ ,�n ), u ↦→ ∂u + Au,<br />

ind∂A = n<br />

2 − µ(N ∗ Wk, graphCΦ + ) − 1<br />

2 (dim W0 + 2 dimV0 − 2 dimW0 ∩ (V0 × V0))<br />

− 1<br />

2<br />

k�<br />

(dimWj−1 + dimWj − 2 dimWj−1 ∩ Wj).<br />

j=1<br />

74

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!