17.01.2013 Views

PDF (1016 kB)

PDF (1016 kB)

PDF (1016 kB)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

where Ã(z) = CA(z)C ⊕ A(z), C denoting complex conjugacy on�n .<br />

By Theorem 5.9, the above operator ∂à - hence the original operator D + G - is Fredholm of<br />

index<br />

ind (∂à ) = µ(Φ− + ∗ n<br />

iÊ2n<br />

, iÊ2n<br />

) − µ(Φ N ∆Ên, iÊ2n<br />

) − , (129)<br />

2<br />

where Φ − , Φ + : [0, 1] → Sp(4n) solve the linear Hamiltonian systems<br />

d<br />

dt Φ− (t) = i Ã(−∞, t)Φ− (t),<br />

d<br />

dt Φ+ (t) = i Ã(+∞, t)Φ+ (t), Φ − (0) = Φ + (0) = I.<br />

Since Ã(−∞, t) = CA1(−t)C ⊕ A2(t), we have Φ − (t) = CΨ − 1 (−t)C ⊕ Ψ2(t), and<br />

µ(CΨ − 1 (−·)CiÊn , iÊn ) = µ(CΨ − 1 (−·)iÊn , iÊn ) = −µ(Ψ − 1 (−·)iÊn , CiÊn )<br />

= −µ(Ψ − 1 (−·)iÊn , iÊn ) = µ(Ψ − 1 iÊn , iÊn ),<br />

where we have used the fact that C is a symplectic isomorphism from (Ê2n , ω0) to (Ê2n , −ω0),<br />

and the fact that the Maslov index changes sign when changing the sign of the symplectic form,<br />

or when reversing the parameterization of the Lagrangian paths. By the additivity of the Maslov<br />

index and by (128) we get<br />

µ(Φ − iÊ2n , iÊ2n ) = µ(CΨ − 1 (−·)CiÊn , iÊn ) + µ(Ψ2iÊn , iÊn )<br />

= µ(Ψ − 1 iÊn , iÊn ) + µ(Ψ − 2 iÊn , iÊn ) = µ Ω (x1) + µ Ω (x2) + n.<br />

On the other hand, Ã(+∞, t) = CA+ ((1 − t)/2)C ⊕ A((t + 1)/2), which implies<br />

Φ + (t) = CΨ + ((1 − t)/2)Ψ + (1/2) −1 C ⊕ Ψ + ((1 + t)/2)Ψ + (1/2) −1 .<br />

Since N ∗ ∆Ên = graphC = {(z, z) | z ∈�n }, we easily find<br />

Φ + (t)N ∗ ∆Ên = graphΓ(t)C, with Γ(t) := Ψ +<br />

� 1 + t<br />

2<br />

�<br />

Ψ +<br />

The symplectic paths Γ and Ψ + are homotopic by the symplectic homotopy<br />

(λ, t) ↦→ Ψ +<br />

�<br />

t + λ<br />

(1 − t)<br />

2<br />

�<br />

Ψ +<br />

� �−1 λ<br />

(1 − t) ,<br />

2<br />

� 1 − t<br />

2<br />

(130)<br />

� −1<br />

. (131)<br />

which leaves the end-points Γ(0) = Ψ + (0) = I and Γ(1) = Ψ + (1) fixed. Therefore, by the<br />

homotopy invariance of the Maslov index, by (78) and by (128) we have<br />

µ(Φ + N ∗ ∆Ên, iÊ2n ) = µ(graphΓC, iÊ2n ) = µ(graphΨ + C, iÊ2n )<br />

= µ(Ψ + iÊn , iÊn ) = µ Ω (y) + n<br />

2 .<br />

Therefore, by (129), (130), and (132), we conclude that<br />

ind (∂à ) = µΩ (x1) + µ Ω �<br />

(x2) + n − µ Ω (y) + n<br />

�<br />

−<br />

2<br />

n<br />

2 = µΩ (x1) + µ Ω (x2) − µ Ω (y).<br />

(132)<br />

Hence we have proved that the fiberwise derivative of the section DJ,H : W Ω Υ → E Ω Υ is a Fredholm<br />

operator of index µ Ω (x1) + µ Ω (x2) − µ Ω (y).<br />

For a generic choice of the ω-compatible almost complex structure J, the section DJ,H is<br />

transverse to the zero-section (the proof of transversality results of this kind is standard, see<br />

[FHS96]). Let us fix such an almost complex structure J. Then, M Ω Υ - if non-empty - is a smooth<br />

submanifold of W Ω Υ of dimension µΩ (x1)+µ Ω (x2) − µ Ω (y). This proves the Ω part of Proposition<br />

3.4.<br />

80

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!