12.01.2013 Aufrufe

SJf_Wettbewerbs_Broschüre_2007 - Die Goldene Sonne am Calanda

SJf_Wettbewerbs_Broschüre_2007 - Die Goldene Sonne am Calanda

SJf_Wettbewerbs_Broschüre_2007 - Die Goldene Sonne am Calanda

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

Daniel Meister<br />

8305 <strong>Die</strong>tlikon<br />

1987<br />

Mathematik / Informatik<br />

Tobias Schlatter<br />

8152 Opfikon<br />

1988<br />

Kantonsschule Oerlikon<br />

Würdigung<br />

In dieser Arbeit wurde nebst eines bekannten<br />

Neuronalen Netzwerks auch<br />

eine noch im Forschungsstadium befindliche<br />

Lernstrategie implementiert. <strong>Die</strong>se<br />

wurde an unterschiedlichen Problemstellungen<br />

angewandt, insbesondere an<br />

einem anspruchsvollen Strategiespiel.<br />

<strong>Die</strong> Ergebnisse sind, gemessen <strong>am</strong> Innovationsgehalt<br />

der Aufgabenstellung, hervorragend.<br />

<strong>Die</strong> Menge an Software, die<br />

im Rahmen der Arbeit implementiert wurde,<br />

sowie die Komplexität der Theorien,<br />

die bearbeitet wurden, sind ausserordentlich.<br />

Das Niveau entspricht einer guten<br />

Arbeit an einer Hochschule.<br />

Prädikat<br />

Hervorragend<br />

Sonderpreis<br />

European Union Contest<br />

for young Scientists in Valencia<br />

Sonderanerkennung<br />

Metrohm Stiftung Herisau<br />

Expertin<br />

Nadine Tschichold<br />

ETH Zürich, Dozentin<br />

42<br />

Neuronale Netze – Simulation und Anwendung in Strategiespielen<br />

The aim of our project was to understand more about artificial neural networks and to explore<br />

the limits of this technology.<br />

Artificial neural networks are self-learning algorithms that are inspired by the way biological<br />

nervous systems, such as the brain, process information. They are suitable for solving complex<br />

problems in an efficient way; they do not necessarily find the perfect solution. This has to be<br />

taken into consideration when problems are chosen. The advantages of artificial neural networks<br />

are their adaptability, learning aptitude, robustness and the possibility of generalisation. We<br />

tested the limits of artificial neural networks by developing a progr<strong>am</strong> that learns to win a board<br />

g<strong>am</strong>e (The Settlers of Catan) involving sophisticated strategies and complex rules.<br />

There are two common approaches to design the learning process for strategy g<strong>am</strong>es: one is<br />

the so-called “supervised learning”, in which the network is trained by an expert using s<strong>am</strong>ple<br />

g<strong>am</strong>e cases. The other is the “reinforcement learning”, in which the learning system receives<br />

reward or penalty; it is left to discover the underlying strategy of the g<strong>am</strong>e by itself.<br />

We chose the latter approach for our project because with reinforcement learning the potential<br />

performance of the neural network is not limited by the quality of the s<strong>am</strong>ple cases or by the<br />

playing ability of the expert. In our literature review we discovered a progr<strong>am</strong> called TD-G<strong>am</strong>mon<br />

which is based on reinforcement learning and is now capable of holding its own against the best<br />

backg<strong>am</strong>mon players in the world.<br />

After reviewing the literature and becoming f<strong>am</strong>iliar with theories of artificial neural networks, we<br />

implemented small s<strong>am</strong>ple networks for simple problems, such as the tic-tac-toe g<strong>am</strong>e, to gain<br />

experience.<br />

Because it was important to us that our progr<strong>am</strong> would rapidly develop reasonable strategies as<br />

well as allow the user to interact with it easily, our objectives included a graphical user interface<br />

for “The Settlers of Catan”.<br />

Once we completed the implementation of the logic of the g<strong>am</strong>e, the neural network, the<br />

“neuronal” player and the graphical user interface, we started to train the progr<strong>am</strong>. To obtain<br />

better results, we wrote a second progr<strong>am</strong> that enabled us to train on several computers in<br />

parallel. The results of our work are encouraging. We managed to train several networks to the<br />

point that they were able to play well against each other. Playing against human opponents,<br />

however, turned out to be very difficult because the behaviour of the “neuronal” player is<br />

incomprehensible to humans.<br />

Improving performance would require further research into several open issues, which are described<br />

in the last chapter of our paper. The final chapter also includes suggestions for future<br />

work with the goal of reaching or even exceeding human playing ability. We hope that this is just<br />

the beginning of further research and that we will have the opportunity to develop our ideas<br />

further while being at university.

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!