18.06.2013 Views

Boundary Lyer Theory

Boundary Lyer Theory

Boundary Lyer Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

\\+ere j = 0 (plane flow) or j = 1 (flow with axial symmetry). The boundary condit,ions<br />

arc 16 -- I) = 0 at y = 0 n.ntl 11. =- 11 (n.) at ?/ - 0. For turbulent flows u-and v<br />

a.rc t.he n~pprop~.ink lnrnn vclocit,ics n,tltl ~1 rrprescnt.~ a suitably defined cdtly viscosit,y,<br />

scc for inst,nncc A. M. 0. Smit.11 n.nd 'l'. Cc1)coi [Dl]. I'or Inminer flows €1 .= 0.<br />

7'11~ l,rnl~sft,~.r~~al,iot~ of rqt~s. (9.50) ancl (9.57) to din~en~iot~l~s~ vnria1)Ies incorporaLes<br />

11otJ1 t11(, l$ln.sir~s ant1 lhc Mn~lglrr l.rnnsfot~tnn.titr~~ st^ nlso II. (:orrl.lcr I:13, 341) nntl<br />

is tldined n.s ft)llows :<br />

Tllc cont.it1ui1.y equn.t.io~~ is sat.isfictl I)y the st,rcarn function<br />

nntl E, is t,llc rdtly visvosit,y from ecln. (39.2). The s~~l)script,s tlrnotx- part.inl ctifkrctit.ia.Iion,<br />

anrl the qunnt,it,y<br />

5<br />

77~0; /=O; / =On.r~tlq=cm; I,-- I. (9.63)<br />

Fi~~it~e-tlifl'c?rcncc: cqnnt,ions of sccontl order can I>(: SOIVC~ (by mnt,rix inversion<br />

ront.inrs) rn11r11 nlorc cfficiont.ly trllan t.llirtl (or higher) ordcr equations. It is of intcr-<br />

?st,. t,hct~eforo, t,o rrclurc equations (9.01) to sccond ordcr. To this end the variable<br />

I;' -= /, is int,~ducrtl and eqn. (9.01) is rewritken as<br />

INF'v],l I /FII --F~)-T-~((FE'~--~~F',~]. (9.64)<br />

'J'llis rqua(iot~ now conlains two unknown functions, f and 1'1, hut tllrse ale related<br />

by thr sirnplr rxprcwion<br />

In the absence of srlctior~ or t)lowing the boundnry eonditions nrr<br />

This strip is completely covered by a grid with lines drawn parallel to t,he ( and<br />

coordinates as illustro.t,ctl in Fig. 9.16. Tho stq sizr A[ rcl)rcsc~~t.s t.11~ tlist,nnrc.<br />

bet,wcer~ t,wo snr.crssivc grid lincs 5 = const,a~~t; it is prost~~nctl i.o I)c stn:~ll IIII~, is<br />

ot,hcrwise rrnspccifictl. 'I'hc corresponding step sizes in t.hc q-tlirrctiou nrr spc:c.ilictt<br />

t,o vary in geometric progression. The rnl,io Octwecn t,wo s~~ccrssive grid lincs, TI,<br />

and qn+l, is denoted by I< = I -1 k where 1 kJ varies from 0 t,n 0.05 in l.ypical cases.<br />

Each notlal point is itlcntified by a dou1)lc intlcx m, ?L which tlclinrs it.s posit,ion<br />

Fin, 7, according tso<br />

111 writing t>he Anitc-tlilTerence quol.icnt,s it is corivcnlent t,o int.rocluce t,he moan of<br />

two successive Aq-values<br />

In the step-by-step calculations the solution is considcretl known at 5,n ancl ell<br />

preceding grid lines, and the variables F nntl / are sougl~t at. [,,,, 1.<br />

Fig. 9.16. \'ari.zble stcp size finit.c-rliffrronce grid<br />

for th rnlcr~lnt,ion of laminnr and turbuletlt'<br />

Iiounrlnry Inycrs<br />

x knon.~~ vnlucs,<br />

O r~nknnwn rnll~rs

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!