18.06.2013 Views

Boundary Lyer Theory

Boundary Lyer Theory

Boundary Lyer Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

70-t XX I1 I. 'Ihrbulcnt bonrwlnry lnycrs in comprcwiblc flow<br />

mass in the thx directions: z, y, z. On averaging, the equation of continuity for a<br />

c~omprcssible strewn, cqn. (3.30), leads to<br />

1bcgn.rcling tho clensity flnctuat.ions, it is possible to say at first that p'/@ is hanlly<br />

likely 10 exccctl u'/S. Sinco, now, u'/d < 1, it appears possible to neglect the last<br />

tcrtn in caoll of cqns. (23.6) with respect to the first. Further simplifications rrsult<br />

when aI.l~(:nt,iot~ is confined to bountlary layers in which d & 12. .I. C. Rottn [SO]<br />

clc:~nor~str:~l.ccI l.l~:rt, in such cnscs if, is possiblo altogct,llor to eliminate thc tlcnsity<br />

Illlct~~ations from t,hc cc(nnt,io'ns for boundary layers if, as is customary, tho nornial<br />

st,rosses tllnmsclvrs arc ncglcctctl. First we notice that 6 < ~i in the eqlmt,ion<br />

for t',, in (23.5), so that only two terms need be retained. Purthcrrnore, since<br />

r?p/(7r < ae7/a!/, thc contitluit,y equation (23.G), written for a t)onntlnry layer<br />

which is two-tlimcnsior~d on t,hc average, aeqr~ircs the form<br />

'l'l~c bountlary-layer equation i.9 clrrivecl from eqn. (12.50b) in that cqn. (12.50n),<br />

mult,iplictl wit,l~ u, is adtlcd, with eqns. (18.1) nntl (23.3) s111~sLiLutccI ; thc ro~ult is<br />

thcn averaged in nccortlanco with cqn. (18.4). When the above-mcntionecl t,ertns arc<br />

neglnct.ctl, tho following, final form for the boundary-lnycr equation is ol)t,ninetl:<br />

It is nol.cd that in tyns. (23.Ga) and (23.7) the tlensity fluctnat.iot~ appears only in<br />

the form of fl adtlctl to @ 6. It is, therefore, convenicr~t to re-introduce the original<br />

- -<br />

expression fo; t.ho mass IIIIX p v -;. 17 -1- p' v' in the y-direction, ancl to tlcfine the<br />

tfurl~l~lnnt,, appnrcnt. strc:ss as<br />

In any cam, the exact value of tho mean velocity component at right angles to the<br />

wall, 17, remains untlet,crnmincd, boing of little interest anyway. The energy equat.ion<br />

(12.19) can ljc: treatctl in like manner. Introducing the turbulent heat flux<br />

we obtain tht: following set, of equations which describe the processes in compressible,<br />

t~rrbolcnt, bour!tlary layers:<br />

Ilere, (.he t,erm ~rcpresents the mean valuo of the (lissip:~t ion, ancl for it,, I hc following<br />

npproximat,iori may bc employed:<br />

, @ = ( p<br />

ail<br />

-- -1- rt )<br />

The set must. t)c nugmcntctl by t.hc a.pproxirnato form of the rqn:rt,ion of st,nl,c for<br />

mean values :<br />

- - -<br />

P"PR?'. (ZI.!))<br />

Tho prccccling syst,crn of cquntior~s for co~npressil)lo, l~rrrl)l~lcnt l)o~lntl;~ry I:~.yc!m rcplnccs<br />

crpnt.ions (1 2.6Oa) to (1 2.ROtl) liw corrcspontlitlg I:~n~in:~r flow. 'l'l~c I)OIII~~~:II~<br />

contlitions rcmn.in 11nc11:rngctl (cf. Chap. XII).<br />

In order 1.0 explore the tlchils of t.rnl~nlcnt motion in comprt?ssiblc mctlin, it, is<br />

necessary to untlert,akc tncasuremcnts with hot, wires. 'l'his is matle cliffic~rlt. 0~1 thr<br />

ncctl to unro~lplc 1.11~ c:fTcrt of Lcmpc:rat,urc ant1 vcloc:it,y Ill~ctnn.l~ions \vit.l~in ;I si~~glr<br />

signal. 'L'hc problems which :wise in this way form f.hc subject of tho pl11)lic.n.t.ions<br />

[49, 651 by I,. S. G. Kovns~nny and M. V. Morkovin, rcspc:cl,ivcly. 1,cavirrg n1)art the<br />

appe~rnncc of density :rnd temperature flr1ct,r1:~t,ions, it is found thatf 1.11~ flow rrmnir~s,<br />

in its gcnar:d oublinc, tho same :IS in :LII inc:oml)rc~ssil)le Il~~itl. Ilowc~vc:r, :IS I,IIv hl:rc.h<br />

nnml)or is incm:~sctl, the volooity Iluc:tu:~Liot~s loso ill iill,t:tlsit.y, :I.$ ~lc!~r~o~~sl,r:tl,~:(I I)y<br />

Lhn oxpc:rim~~n(,n.I rrs11ll.s tlrtc! 1.0 A. I,. IZistlrr 1471 : LII~~ SIIOWII ill Icig. 23. I . '1'11t- t*lli~4~<br />

of tlcnsitv fluctnat,ions which go bcyoncl those inc:lwlrcl in ccltls. (23.8:~) to (23.8~)<br />

Fig. 23.1. Distribution of turbulent vclocity<br />

flnct,nntionn in tire houndnry Inycr<br />

on n flat pink placed st, zero incidence in<br />

a sulvxsonic strcnrn. Monsorc~nc~~b clnr tx,<br />

A. I,. Itiatlcr [47J nntl F. S. Kle11nnoR [48]<br />

In ortler to render the system of cqnntio~~s (23.8;1.) to (23.8tl) more :~mctl:~l)lr<br />

to practical calcnlnt.ions, it is possible, as was (lone in Ch:rp. X [X, to iritrothco i1ll.o<br />

it empirical ass~irnptiorls for momentturn and heat. t,mnsport. lCcluat,iorl (19. I) for thr<br />

app~rent shearing stress t, = t',, is usnnlly taken over ul~changcd. As far ns the Lnrbulent<br />

1ica.t flux is conccrnetl, it is custon~ary to givc it a f rm rc~ninisccr~t of Fourier's<br />

law of ther~nal conduction, cqtl. (12.2), according to which we have<br />

aT<br />

--k.- ?I<br />

Q I -<br />

(Iamiriar) ,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!