18.06.2013 Views

Boundary Lyer Theory

Boundary Lyer Theory

Boundary Lyer Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

434 XV. Non-stcxcly boundary layers<br />

From what has I~ecn snit1 hefore it is clear t,I~at the position of the point of<br />

laminar scparat.io~ is aKcct,ctl by the cxt,ernal osciliat.iona nnd t,hnt the point of<br />

separation must osrillat,~ it,sclf. Finally, C. (1. ],in's mcClrotl lends to t,he valr~able<br />

conrlt~sion t,li;~t t,lw f~rncl;uncnI,nI oscill;tt.io~~ iirtlrlcrs 11iglrr.r harmonics in thc boundarylayrr<br />

o~rillnt~ion.<br />

3. Extrrnnl llnw with etnnll, l~nrlnonic prrturLntins. The c ~ when c t.hc extcrnnl flow<br />

perfor~nn small, hnrn~onic oucillnt~ions hnn bcrn tronbed in n nutnher of publications. The method<br />

employcd was lhnt of a scrirs rxpnnsiori in t,ho pcrturbntion pnran~etcr described in Sco. XVn 3.<br />

We nnswne that the extcrnnl flow is of t,l~e form<br />

IJ (x, 1) = Tf (XI -I- rr, (x) ~'"l , (15.70)<br />

and note t.l~nt,, for it, nod, investigntions rest,rict t,l~en~selves to the cnlculnt.ion of t,hc first<br />

approxin~nlion, that. i ~, of thc fnnctions n,,ol, and l', from eqn. (15.30). M. J. I,ighthill [27]<br />

for~nnlntrd an npproxin~nt.c n~etllotl for tlrc solution of cqn. (15.32) for arbitrary forms of tho<br />

fttnc:t.ion o(s) nnd iJ,(s). The particular cnse when both functions cnn be represented in tho<br />

form of power series ltnn been ronsirlcrcd by 1';. Hori [24], whereas N. Ibott and M. I,. Itoscnxwrig<br />

[3!)1 o~nn~inocl t.110 CXRIII~IO W I I the ~ t.wo Ftn~ct.ions #(x) nnrl #,(z) nro ui111p1e powers<br />

or r. 'l'llc c?xrltll~)~o of ~t.;ignat,ion flow st.lldiccl by kt. I$. (:lnllcrt 1131 nlld N. /Lot.t [:!)I nR wc?II<br />

as tlrc Ilow along n Il:lt, plate nt 7,cro inciclcrlrc dincnssccl by A. Gosh (171 nncl S. (:il~bc:l:rLo [I 1, 121<br />

oons1it.ut.c n111)-c:nsw of t.11~ 1nt.tc.r. Finally, A. (:tmll 1171 nncl 1'. (:. Hill ant1 A. 11. Strnning 12.71<br />

pcrforn~cd exporitncnt~nl ~nc:murcmclltR on non-sleady ho~~t~clnry layers.<br />

If the oxtcrnnl flow is of the form<br />

U (r,t) - csm (I + E einl) = if (I + E ci1I1)<br />

(15.71)<br />

thrn rqns. (15.31) Itwl 1x1 Iho familiar d1(rrrrntia1 rqt~ntions for uiniilnr sohltions, C(1119. (9.8) and<br />

(!).Rn), nntnc.ly,<br />

with<br />

Asnutning in cqns. (1G.32) that<br />

u, = E ei"' V @, (6, 11) ,<br />

wo arc? Ircl 1.0 t.hc ftlllowing tlilTcrenl.inl cqnntic~nn for t.lw rwxilinry functions @(E, 7) and O (E, 7):<br />

nt + 1 ln -1- 1<br />

-- -<br />

fDq.t'l<br />

/ (D,," - (€ t 2 m/')@, -1- 1'' @ - ( I - in) 1' E @,,E 4-<br />

1 2<br />

2<br />

+ (1 - m)/"€@t + [ .I- 2m = 0 , (15.76)<br />

with t,hc bonndnry conditions<br />

r. Periodic boundary-Inyrr flows 435<br />

The precwling clilTcrmt.ixl cqnntions arc, normnlly, ROIV~~ in t.hc form of srrics expnn.siorls. first.<br />

for smnll vnlucs of F and lhcn for Iargc vnlucu of F. Assuming thnt<br />

for small vnlucs of t, we arc lerl to ordinnry dilTcrcntinl eqnntions for tho fnnctions dik(l,) nntl<br />

Ok(7). The derivnlivc~<br />

loenl Nnssclt nnmtmr. In this mnnnor we: rnn clwivo ll~nt,<br />

and that<br />

at q = 0 mrvc to cnlculnb tho slrenring ulrcnn nt t.ho wnll IIR wt!II IIH OIC<br />

I<br />

Arrortling Lo 1'. K. Moore 1.711 (am nlno A. ( h l [I71 ~ nntl S. (>il,l)c~lntn 112]), 1 1 r:rsr ~ of t.lw<br />

flat plntc at zero incidence is reprcacntcd by thc cxpreasion:<br />

nntl<br />

SubstiLuting n = 0, wo rewvcr tho uasi steady solution, which signifies thnt nt every inst,ant<br />

the solution behnvw like the shady Jutio; for tho instantnncous cxternal vcIooity The a penrnnco<br />

of an imaginary term nt n =!= 0 moans that the boundary layer aull'ers n phase shift wit( respect<br />

to the cxternal flow, the shift being diflercut for velocity nnd blnpcrntr~rc. Wl~ereas the rnxxirna<br />

in shearing st,rcsa lend thc tnnxima in the cxternnl Ilow (in the limit n x/IJm -+ CT 1.11~ pllnse<br />

ar~gle tmda to 459, the mnximn in lnmpcrnturo Ing hchintl t.l~rrn (in the limit, ?l,:r/!~,., -t m~<br />

lhc pltmc nnglo tendn to '30"). 111 ntldition, iL turns ont t.l~trt nt lnrgt! VIIIIIOR of n ~/ll~., t . 1 nn~pli-<br />

~<br />

tudc of thc ahenring-strrxw oncillntion incrcnaca withont bound, wl~crens t,l~nL or I.l~c? I~nnt, llnx<br />

slowly decays tm zero na n %/Urn is mndc Lo incrcnac.<br />

When thc solution of the system of eqttntions (15.33) is corrictl to second ordor, it is hnd thnt tho functions u,(z.y,t), v,(z,y,l), and l',(z,!/,l) cont,nin n Irnrmonic pnrt of donldt: f'rotp~cncy<br />

and n ~upplemnntnry, abndy pnrl which in inclopontlt\nl, or 1.itno. 'l'l~c~ Inl.lr.r tnotlific~~ I.ltc\ 1111sic:<br />

flow and cnn I)o intcrprcbtl na a secondnry flow in cot~~plnhr 11111tlogy wi1.11 1.1111t, t.~t(~t~I(~r(~cI<br />

ill<br />

the solutions of tho pwccding seelion.<br />

For shgnalion flow, wc hnvc Ul(a) = consl, anel it in fo~td<br />

t.lmt t.hnrl u,, o, and all<br />

higher-order term vanish, as demonstrated by M. R. Glnuert [13]. Conneqnently, the basic

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!