18.06.2013 Views

Boundary Lyer Theory

Boundary Lyer Theory

Boundary Lyer Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

360<br />

XIII. Laminar bonndory Inyers in compressible flow<br />

l'tg. 1:1.1!). Srl~licren photogrnpl~ of shock wave; direction of flow front left to right, aftcr<br />

Adtrrrt, Ifrldtnnnn nnd Ilott [I]: rr) 1:lrninnr bonntlery layer; tnult.iplo I-sliock, M = 1.92.<br />

R,r, - :!!)(I; I)) turl)ulrnt 1)011ndwy lnyrr; normal ul~ork, M - 128, Rn, - 1159<br />

I'ig. 18.20. lsohars in a shock re-<br />

gion in Intninnr flow (I-sl~ock),<br />

i~flrr Arkc-rrt. Iprldrnnn~~ and<br />

I(ot,t I I ]<br />

au& t)econie of the same order of magnitude, and tmnsvrrsc prrssurc grntlirrlts ciLn<br />

also occur tllcrc. Both conditions rcntler tho well-known nss~~mptions of hnrttltl:uylayer<br />

theory invalid.<br />

The a,ppenrancc of tho shock wave is funtlamcrltnlly tliFfcrctlt tlrl)c.t~tlillg 011<br />

whrthcr the boutttlary lnycr is laminar or t,url)rtlcnt,, Fig. 133.19. A sllor(, tlist:~iic-p<br />

allcntl of tltc point wltcrc the csscnt,ially pcrpctdicrtl:~r sltovlc wave itnpit~gcs "11 :I<br />

laminar boundary layer, there nppea.rs a short Icg forming a so-cnllcct I-s~Io&.<br />

Fig. 13.19n.. Tn gcncml, wllcn the boundary lnyer is turbulcnt,, the rtor~nnl sltoc:li tloc.~<br />

not split and no I-shocks a.rc formed, Fig. 13.19b. An obliv~ce shock wlticlt ilnpit~gek<br />

on a laminar boundary laycr from the outside becomcs rcllectcd from it in t,llc for111<br />

of n fan of expansion waves, Fig. 13.30a. Ilowever, whcn t.he bountlary lnyrr is<br />

trurbnlcnt, the rcflcxion nppmrs in the form of n mow concc?ntmt,cd cspnt~aiotl wn.vcx<br />

(Fig. 13.30b).<br />

The plot of isobaric curves in Fig. 13.20 ant1 the prrssrtrc curvcs in lcig. 1:j.21<br />

how t,hat t.lw rat,c of prcssnrc incrcnsc along a Iaminnr or :I tnrl)~rlcnL Im~titl:~r~.<br />

lnycr is more gratlnal than in tltc cxtcrnal strcam. 'l'his llrtttcnirlg ol' Lltc prcssltrc<br />

gradient in the boundary layer is described by stating t,llat the prcssurc dist.ribrrtion<br />

"diffuses" near the wall. It is observed that diflusion is much lnorc prono~tncctl<br />

for a laminar tphan for a turbulent boundary Iaycr. The tlifkrcncc bcLwccn 1nniinn.r<br />

and turbulent shock diffusions can also be recognized from Fig. 13.22 which roprcscr~t,~<br />

tho pressure variation along n flat platc placed parallcl to n supersonic st.rmtn. 'L'hc<br />

mcasnrcmcnts were pcrforrnctl by 11. MT. Ilicpmnnn, A. lto~ltl~o attd S. I)h:r\viw<br />

[64]. The pressurc plob llavc been tnlren mar thc point on tllc platc whcrc t,hc<br />

oblique shock produced by a wedge interacts with thc boundary laycr. Tltc prcssurc<br />

gradient is co~;sitlcrnbly stccper for the turbulcnt t,hnn for the 1:rrninnr I)oltntlary<br />

Iaycr. The witltl~ of diffusion is cqunl to about 100 d in t,hc case of int.nr:wfiotl with<br />

Fig. 18.22. Prrsqnro tlistrihution along n<br />

flat plate at supersonic velocity in the<br />

016<br />

ncigl~bonrl~ood of the region of reflcxion<br />

of n shock wave from laminar and tur-<br />

8 7<br />

hrllcrtt borrntlnry layers, xftrr Lirpmann,<br />

008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!