18.06.2013 Views

Boundary Lyer Theory

Boundary Lyer Theory

Boundary Lyer Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

in cross-flow, tlrprntls only on lhn potat~l,i:d vclo~it~y tlistril)ution. IJ(z). By ront.r:~st,,<br />

whcn an axially symmctrical I)oundary laycr is stutlictl, for rxamplc that on a<br />

rotating 1)ody of rcvolntion, it is found that the contour r(a) of the body entcrs<br />

explicitly into thc corresponding rquations. Tile prcsont scction is clcvotctl lo x<br />

more tlotailctl invcst,ignt,io~~ inl,o thc rolntion 1)ctwc~cn two-tli~nr~~sit)t~:iI nlicl axi:illy<br />

symmntric l~our~rlary Inycrs.<br />

In st,~n.tly flow the Oountlary-layor rqr~:rt.ions for Lwo-tlitncnsiond flow :~ntl fnr<br />

axially symmot~rical flow are given I)y cqns. (7. lo), (7.1 I) ant1 ( I 1.278, h), rospectivrly.<br />

l'hc Int,tcr rcfcr to a curvilincnr systc~n of c:oortlin:~.l.c:s with z tlcnot,ing t,l~r cttrrrnl,<br />

arc: Icr~gt~h nntl y tlrnot,ing {,l~o tlist,nncc from t,hr wall in :L tlirrt-tion normal t,u if..<br />

The rcspcctivc vc1ocit.y components n.rc tlcnotwl I)y IL nntl v, and IJw mn.gnit,ntlcs<br />

wit.11 a bar rcfrr t,o tho two-tlinicnsiond cnsr. Wit.11 these syml)ols, wo Itavo for<br />

tho two-tlinirnsional msc:<br />

for t.hc axially symn~ct~ricnl vnsr<br />

Ilrre ~(z) dcnot.cs tJto (list,ancc of a point, on t11c wa.ll from 1.11~ axis of symmntq.<br />

Thr first eqnnfions of l)ot,l~ systems nro iclrnt.icn1, the tliffrrrncr Ixing onl,y in t.llc<br />

npprnrnncy of t,hr rntlirls ~(n.) in t.11~ rqun.l,ion of conI,innit,g.<br />

It, sc~ms 1.1111s rcasnnnl)lc to inqnire wlteLllrr it, is possil)lo 1.0 intlic.at.c a transformal,ion<br />

wl~icll woultl permitf t.hc nsn of t,l~n solt~t.ions of Lltc two-tlirnrnsionnl cnsc<br />

1.0 tlrrivc solr~f,ions of t,l~c n.xinlly syn~rnrt,ricnl cnsr. Such n gvncml rc1at,ionsI1il)<br />

bctwocn t,wo-dimcnsiond nntl n.xially symmctrical I~ounrlary laycrs Itas bccn cliscovcrctl<br />

by ITT. RTn.nglrr [72]. It rr~lrlccs tho calcnlation of thc hminn.r 11ountla.ry Inyor<br />

for am n.xially s.ymmct,ric.:~l botly t,o tl~nf, on a cylintlricnl I)otly. 'l'he givcn body of<br />

rrvolut,ion is nssocin.18rtl wit.11 n.n itlcnl pot,cnt,inl vclocit.y dist,ril)ntion for n rylint1ric:ll<br />

body, the f~lncl~ior~ Lcing rnsily calcnlatfctl from the conhur ant1 the potcnt,inl vcloci1.y<br />

tlist.ril)tlt,int~ or t.ho botly of rovol~tkn. Mnnglrr's tfmnsl;mnation is also valid for<br />

comprcssil)lt: Imtlntlnry In.ycrs, n.s well ns for tllcrmnl boundnry 1:iycrs in In.tnil~:ir<br />

flow. Wr sh:1.11, I~owcvrr, consitlcr il, here only in rclat,ion to incomprrssi1)lo flow.<br />

According to Manglrr, l.hc cqrin.t.ions whic:l~ t.m.nsform tJle coortlin:~.t.es ant1 111~<br />

velocit.ics of t.hc xxinlly symmct.ricnl pro1)lcm to t,hosc of t.he eqiiivalcnt two-tlimcns-<br />

ional problrm n.rc as follows:<br />

Z<br />

w11orr 1, (Icnotrs a const~arit Iw~gth. Itcn~cnibcring that<br />

it, is rasy to verify tht thc syst,rm of c.q~t:itions (1 1.60) l,mnsforms intm oqns. (1 1 .4!))<br />

by t,hn wc: of LIto sul~sl~itulions (Il .GI).<br />

WIC hountla,ry layer on a 1)otly of revolution r(z) having tho itlml pol,rnt.ial<br />

vclocit.y tlisI,ril~clf.ion IJ(z) nnn l)c cv:dt~al.c:tl by con~pnting t h t,\vo-(litllr~~sio~~:~I<br />

I,ot~n(l:~,ry l:tycr for tt, vcloc:it,.y tli~l,rih~rI,ion o(:?), wltc:ro /J r-: ~ I NZ I ti~~l :I: tire rcl~iI3wl ,<br />

I)y oqns. (1 I .GI). Il:~vi~tg c~alcrtli~t,rxl I.hc voloc.il.,y oornpot~ol~l.~ ii, nntl 6 for l.11~ l.wotlimctl~iottal<br />

I)ortntl:~ry Inycr it is possible tlo tlctcrrnine tho con~poncntn I* nntl IT or<br />

tho n.xinlly symmct.rical bountlnry laycr $1 ith tho nit1 of thc t,mnsforlnnt,ion rquations<br />

(11.51).<br />

Iloncc, from rqn. (11.51), we Itavo<br />

l'hc pol.rnt.ial flow of tllc associatd two-tlimct~sional flow bccornrs<br />

J - ---<br />

U(2) = u, 113 L2 2,<br />

so that 0 ( ~ = ) C 5' , wllcrc (: dcnotc~ a constant. 'rhc associat.~d two-tlitncnsio~la.l<br />

flow bclongs to thc class of w~tlgc flows disoussotl in Sce. 1Xa ant1 is givcn<br />

by I1 = C an', with m = + for the present example. l'rom cqn. (9.7) wc find the<br />

wc~lgc nnglp P = 2 m/(m -1-1) = 4. Thc associntctl two-tlimcnsiond flow is t.ltat<br />

past a wcdgc wit,h an anglc n P .= n/2. '1'11~ fact that nxinlly symmct.rical stagnn,l.ion<br />

flow ran be rcduced to the case of flow past, a wcdgc whosc angle is n/2 wa.s st,nt,etl<br />

in Scc. 1Xa and is now confirmed.<br />

11. Three-clin~ensio~~nl Lountlnry lnyers<br />

IJtttil now wc have restricted o~~rsrlvcs nln~ost cxc:l~lsivcly Lo the consitlcrat,ion<br />

of two-tlimrnsionnI :mi axially sylnmnt.rical prol~lcrns. 1'rol)lcms of t.wo-tlinlct~siot~al<br />

nncl of nsinlly syrntncI,ricnl flow havo this in common l.ltat t,ho prcscril)otl 1)oI,cnt.in.l<br />

flow tlrprntls ot~ly on onr sp~cr: coortlil~:il.o, :l.ntl tho l,wo vc:loc:it,y con~l)c~~ottls ill Ih(:<br />

I~o~tntlnry I:~ycr tlc:pcntl on t8wo space roordin:~tcs<br />

sional 1)orrntl:iry lnycr thc cxhcrnal potcnt.ial llow clcpcntls on two coortlin:~.l.cs in<br />

thc w:~ll srlrfaco and t.ltc llow willtin tllc Imuntlnry laycr posscsscs all tl~rcc vcloci1.y<br />

componrnts which, moreover, tlcpcnd on all three spxco coort1in;~tcs in thc gcncr:~l<br />

cmc. 'l'hc flow abont a disk rot,nl,ing in a fluid at rest (Scc. Vb) and rotntion in thc<br />

nc~ig11l)ourllootl of a fixed wall (Scc. Xla) const,it3utr cxarnl)lrs of t,l~rcn-tlimcnsionnl<br />

I)ol~ntl:~ry I:~yors, rrpnrt from Ijcing cxnol sol~~l~ions of tllc Nlbvior-Stokes cqttn.t,io~~s.<br />

(\:LCII. [II I,IIc cnsc ol' n t ,I~t~(~(:-tli~~~t:t~--

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!