18.06.2013 Views

Boundary Lyer Theory

Boundary Lyer Theory

Boundary Lyer Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CIIAFTER VIII<br />

Gencral propertiee of the boundary-layer equatione<br />

12cforc: passing to t.lw ca.lcr~l:ll~ion of furtl~cr cxarnplcs of bountlary-layer llow<br />

in t.ha next, chnpt,rr, we prol)os': first, t.o tlisc~lss some grncral propertics of the bound-<br />

:~ry-l:rycr t:quatiorls. 111 tloing so wo shall ronfinc our atttlention to steady, twotlimension:tl,<br />

ant1 ir~c-o~r~~)rt~ssiI)l(~ l)o~~n(lar~ I:ly~rs.<br />

Alt,hougl~ t.Iw ~)o~~ntl;trj--l:i.yt~r rcl~~:ttions have hen simplified to a great axtmt.,<br />

as coml)arctl \vit.l~ t,hr Navir~.-St.oltcs rclr~at,ions. thoy arc still so tlifficult from t'he<br />

matJrrn~at.ical point of vicw tht. not vdry marly gcncml ~t~atcn~rnts :rbout tlicrn<br />

ran I,c matle. 'I'o I~c:gin wit.ll, it. is import-antf to not.ice that t,he Navier-Slolrcs<br />

aqlla.t,iotls :trc or t,I~t? rllipt.ic. typa wit,h rrspcct to tllc c:oordin:~l,cs, whcrms Pranrltl's<br />

l~o~~t~tI:~.ry-l;t~~t~r cq~~:~,I~iot~s :tro p:ir;th~lic, It, is :L cowo~~~~t~rwr or lhc sin~plifying<br />

nss~rrnpt~iol~s in Imuntl:rry-layer t,hcory that tho prcssuro can be assumeti constant<br />

in R clirrction n.t right :~nglcs to the hountlwy Inycr, whereas along tho wall the<br />

1wess11rc can be rcprdetl as bcing "imprcsscd" I)g the external flow so that it bccwncs<br />

a givrn f~lnc:I.ion. The rcsr~lt~ing omission of t,hc arlnntion of motion porpcntlicul:ir<br />

t.o the tlirccliott of flow can be i~~tcrprctctl physically I)y stat,ing that a fluitl<br />

~);trt.ic.la in tha l)our~tl:~ry Iaycr has zcro mass, and sulTcrs no frictional drag, as far<br />

;rs it,s motlion in t.11r t.mnsvcrsc ttirecLion is conccrnrcl. It is, tl~crcforc, clear t,ha.t8<br />

with sr~t:lr f~lnrl;trnrt~t,al cl~angcs introtl~~ccd int,o the cqtlat,ions of n~ot~ion we mnsb<br />

nnt.ic.ipatc t.ll:~t, tllrir solut,ions will exhibit certain rn:ltI~cmatical singnlarities,<br />

nn(1 t.ll:lt, :tgrrrrnrnt I,c:t,wrcr~ ol)scrved :t11(1 ~illt:ulat,ed phrrlon~ona cannot always<br />

'I'ho assu~npt~ions which warc rnatlc irt tho tlcrivation of t,hc tmuritlary-layer<br />

rq~tntions are s:~tisfictl with an increasing tlcgrce of accuracy as the Itaynolds number<br />

ir~c:rrnses.<br />

,,<br />

l hils hountl:~ry-layer thcory can bc regardcd as a process of nsymplolic<br />

i~itrgmtiol~ of t,llr Nn.vicr-Bt,olrrs rqnn.t,ions at wry In.rgc Itcynoltls nurnl~c~~s*. 'rhis<br />

sl.:~trmrnt, Irntls 11s now to R tlisc~ission of the yclnt,iortship bet.wcen t(11c Itcynoltls<br />

nirmhcr and t.he chn.rnctt~ris(.ics of a t~~indary 1h.yer on our individrlal body-under<br />

consitlcrat,ion. It, will 1)a reanllctl t,hat in thctlcrivat~ion of the boundary-layer equations<br />

--- - - - - --<br />

t C/. Set-R. Vllf nncl IXj.<br />

* 'I'llo srg,~n~rnt, t~ont,ninctl in tl~in nwtion wan nlronrly tlinc~ls.st?d in Sec. Vllf on high-order<br />

II~)~~~OX~III:~~~OIIR.<br />

'I'IIv itll~l~lilir~~tio~~ is givm I~c.rr for t.lw mltc of Iwl.l.rr ~l~~tlrrnt~it~tlil~g.<br />

a. Drpel~denrc of the rhnmcteristicn of n. boundary lnyer on the llry1101dn IIIIOIIIPT 151<br />

tlinler~sionlcss quantities were used; all velocities were referred to the free-stream<br />

velocity IT,,, all lengths having been retfuced with thr aid of n cl~aractcristic length<br />

of thr botly, 11. 1)cnoting all tlirnensionless magnitutfes I I a ~ prime, thus v/fJm, =u',<br />

. . . , x/L = z', . . . , wc obtain the following equations for the steady, two-tlimrnsionnl<br />

CRSR :<br />

scc nlso cqs. (7.10) t,o (7.12). Itere R dcl~otcs t.lro ltcynolds nurnbrr for~ntyl wit.11 t,)lc<br />

nit1 of 1.11~ rcfcrencc qunntitics<br />

It is seen from eqns. (8.1) and (8.2) that, the boundary-layer solution dcpcnds on<br />

ow parameter, the Iteynolds number R, if the shape of the botly, and, hcnc:c, t,hc<br />

potential motion U1(x') are given. By the use of a further transformation it is<br />

possible to clirninnt.~ the? Rcynoltls number also from cqns. (8.1) nnd (8.2). If wt: p111.<br />

eqns. (8.1) and (8.2) transform into:<br />

with the boundary conditions: v' = O and v" =O at y" -0 and 71' .= U' at y" =a.<br />

, J , hese equations do not now contain the R.rynolrls numl)cr, so that the solutions<br />

of this system, i. e. the functions u1(z', y") and v" (sf, y"), are also independent of the<br />

Reynolds number. A variation in the Reynolds numbcr cnnscs an nffinc t,rnns-<br />

formation of tho boundary lnynr during which tho ordinn.t,o nntl the vclonily in 1,11(.<br />

transverse dircction arc mult,iplictl by R-'I2. In othcr words, for n given botly tho<br />

tlimcn~ionless velocity components M/U, ant1 (v/U,) . (U, L/V)'/~ n.ro fur~cl.ions<br />

of the dimensionless coortlinates z/L and (?//I,) . ((I, I,/V)'~~; the functions, marc,.<br />

over, do not depend on the Reynolds nun~bcr any longer.<br />

The practical importance of this principle o/ nim.ilat.il?y wifl~ resp-1 lo Ilrynold.~<br />

nirmher consists in thc fact that for a given body shape it suffir:cs to find the solrtt,iot~<br />

to the l~oundary-layer problem only once in terms of the above tlimcnsionless varia1)lcs.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!