18.06.2013 Views

Boundary Lyer Theory

Boundary Lyer Theory

Boundary Lyer Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

328 X I1 1. J,nn~i~~nr bo~~ntl:~ry Inyrrs in comprcusihle flow<br />

or1)itnl velocity of a satellite of w, = 8 lzmlsec, the temperature rise even in a real<br />

gas is still of t,l~c order of 10,000 tlcg C. Tho mngc of Mach numbers M, 1 6, in which<br />

thrrc cxisl, Inrgo cIiKcrrnncs bctwcon tho bchavionr of a real as opposed to a perfect<br />

,gas, is givrn t.Itt: tmme of hypersoltic flow. 'l'llc occtlrrence of chemical reactions<br />

(ioniznl.io~l, tlissocint.ion) wl~ich sc:t in behind a shock wave or in t.he Imundary layer<br />

OII :I. solitl Imly ill :I Itypt?rsonic sl.rt::~m by virt,no of tho cxistcncc: ol:t high f,c:tnj)c:r:~.t,trrc,<br />

c.otwitlcr;tl)ly c.otnldic:xtcs t,llc I.;~slr of annlyzing t,ho flow. For this reason, wc sl~i~ll<br />

rt,s(.rit:t, our consitlcrat.ions to that range of Mach numbers in which tho fluid can<br />

still 1)c :~ssl~mctl t.o obry 1.11~ perfect-gas law; ir~ air, this corrcspontls to a range<br />

of M.,, -r: 6. In motlcrn t~itncs ni11(:11 nttcnt.ion has I)ccn giver: t,o tllcstntly of l)onntJary-<br />

Inyrr Ilows at hyprrsonic vclocit.irs ant1 in 1,hc presence of c1iemic;tl reactions. For<br />

drtails, tllc rrntlrr is rcfcrrctl to t.he hole by 1%'. 11. J)ormnce [20].<br />

Fig. 13. I. Tcmpcrnt,uro rise in air in ternis<br />

ol thc flight velocit.y, w,, and t,lle Mach<br />

w,Rm/secJ<br />

n~~nil~cr, M,. 'Vhc curve Iabcllcd "l)erI'ect<br />

gas" mas calculst~d wit.11 the nit1 of eqns.<br />

(13.1) nntl (13.2). Thc velocity 111s = 7.0<br />

km/sec in that of nn nrtificinl satellite in<br />

orbit,, and lo,< = 11.2 km/scc roprcsenh<br />

the e-9cnpc ve~ocit~y of n satalIite from<br />

I<br />

0<br />

~<br />

6 I2<br />

I<br />

8<br />

I<br />

24<br />

I<br />

36<br />

I<br />

42<br />

, the earth ~<br />

Him<br />

Even in I.llc mngc of snpcrsonic Mach numbers ( M, < 6 in air), the t,cmperature<br />

rise irt thr gascww stream is high enough to force us to talrc int,o a.ccount the effect<br />

of t,cmpcrehrc: on the proportics of tJllc gas, in particular, on ils viscosity. The lrinematic<br />

viscosit,y of most gases, and of air wnong Lhem, incrcascs cor~sitlcrably as the<br />

t.ernl)craturc is incronsctl.<br />

In t,llc caso of air, as sltown I)y E. R. van Driest [30], it is possible to use an interpoI:~t.ion<br />

fbrmuln l):~.sctl on I). M. Sntdlcrland's theory of viscosi1,y. This can be written<br />

wllrrc /I,, clcnotcs the viscosity at the reference Lrnjperaturc To, and Sl is a constant<br />

whit:l~ for air assumes the value<br />

S1=llOK. '<br />

l'ltc lm?twli~tg rel:~t.ion I)ct~weon tlle viscosiby /I of air and the temperature, T, is<br />

scerl plottd a.s curve (I) in Fig. 13.2. Sinco t,hc relation (13.3) is still too complicated,<br />

it is c:nst.omnry l,o npproxirn:~.l,c i(( in thcorc~t.icnl calculat.ions by tho simpler power law<br />

where 1,llc constant h sc3rvcs to nchicve a better apl)rosim:tl,ion 1.0 thc more cx:~c%<br />

Sut,hrrIn.nd formt~la (13.3) in 1.h~ nciglll)onrl~ootl of a tlcsirotl l,rt~ll)c~r:l.l.lr~~c r:111p<br />

(cf. Scc. XIlTtl).<br />

Fig. 13.2. The dynamic vis-<br />

coaity, 11, of air in tcr~ns<br />

of the temperaturc T<br />

Curvc(1) ?dras~~rc~ncnls<br />

and inler-<br />

pnlalion forlaula (13.3) hased on<br />

Sntherlnntl's rquntlnn. Ourvcn (2).<br />

(3). rind (4) pow~r lacs. cqn.<br />

(13.0, wit11 difirnnt values of<br />

thc exponent ro

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!