18.06.2013 Views

Boundary Lyer Theory

Boundary Lyer Theory

Boundary Lyer Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

664 XXI. Turbulent boundary layers at zero pressure gradient<br />

We shall now calculate the valuc of k,,,, for a wing of length 1 = 2 m (about 6.5 ft) in<br />

air (v = 14 x m2/scc) at a velocity U, =83m/sec =3OOkm/hr (about 185 mph).<br />

We have R, = U, l/v w lo7. Consider a point on the wing at x = 0.1 1, i. e. at<br />

R, = U, x/v m lo6. The boundary layer can remain laminar as far as this point<br />

owing to the existence of a negative pressure gradient. The shearing stress at thc wall<br />

--<br />

for a laminar boundary layer is given by eqn. (7.32) and is to/~ =0.332 UW2 1/1'/~~X =<br />

= 0.332 x 6000 x lo-? m2/scc2 = 2.20 m2/sec2. IIcnce v, = itole = 1.52 mlsec.<br />

Inserting into cqn. (21.40) we havc<br />

v 15<br />

kc,,, = 15 - = ~ 6 X 3 0.14 x lo-' m = 0.14 mm (about 0.0056 in) .<br />

u 8<br />

This shows that the critical size of a protuhcrancc which causes transition is about<br />

ten times largcr t,linn thc valuc of about 0.02 rnm (0.0008 in) in the turbulent boundary<br />

layer, as calculatctl in Tablc 21.3, for the case in hand (small aeroplane).<br />

Thc laminar bo~~ndary laycr "can stand" much largcr roughness than the turbulent<br />

boundary layer. I(. Schcrbarth [481 carrictl out experiments on the bchnviour<br />

of laminar bountlnry layers on walls provided with single obstacles (rivet heads).<br />

It was mccrtained that behind the obstaclc t,herc forms a wedge-like turbulent<br />

distjnrbcd rcgion whose angle of sprcad is about 14O to 18'.<br />

r 1<br />

I hc very rxlmsivc mmsuremenl~s carried out bv E. G. Feindt 1171 h:~vn I d to<br />

k J - -..<br />

a refincnicnt~ of the criterion for t,l~c critlical height given in eqn. (21.46) as mentioned<br />

in See. XVIIg.<br />

Kg. 21.18. hag on circular cylinders<br />

at varying ronghness, aftm Fage and<br />

Warsap [I41<br />

Thc inflnrnct of rouglmcss on form tlrag can be surnrnarized a$ follows: bodirs<br />

with sharp rtlgrs, such as c. g. a flat plate at right angles to the st,rearn,'nre quite<br />

insensitive to surface roughness, because the poitjt of transition is determined by<br />

thc edges. 011 the othcr hand, thc drag of bluff bodies, such as circular cylinders, is<br />

very sensitive to roughness. Thc valne of the critical Rcyrloltls number for which<br />

thc drag shows a sudtlcn drop (Pig. 1.4) tlrpcnds to a rnarltetl degree on thc roughness<br />

of Ihc surfacc. According to mcasurrmcnts, [I, 141 as shown in Fig. 21.18, the critical<br />

Reynolds nurnher decreases with increasiug relative roughncss k/R (d = 2 R = dia-<br />

meter of cylinder). Tllc boundary laycr appcars to I)c tlisturbctl by rougl~ncss Lo<br />

such a tlcgrec that transition occurs at considerably lower Iteynoltls nurn1)rrs t.lr:~n<br />

is the case with smooth cylinclers. Ronghncss has, Olwrcforc, thc samo clTc:ct as<br />

Prancltl's tripping wire (Fig. 2.25), namely, it does reclncc tlrag in a ccrl.nin rnngc<br />

of Reynolds numbers. Jn any case the drag in thc supcrcritical r:tnge of Itcynoltls<br />

llu~nbcrs is always Iargcr for the rough than for t.11~ smool~l~ cylintlrrs; scc I ~tm IC,OJ.<br />

[I] Ackerct, J.: Schweiz. Bnuzeitung 108, 25 (1936).<br />

[la] Alltonin, It.A., nntl Wood, D. H.: Cnlculnt,inn of a tnrl~r~lent I~onntl~wy Inycr clo\vnslrt~:~n~<br />

of a an1a11 step cliange in surface roughncss. Asro. Quart,. 26, 202--210 (1!)75).<br />

[Z] Rammert, K., sad Fiedler, K.: Dcr Rcibungaverlnat von rn,~heri TII~~~IICIIS~~I~<br />

13rcnnatoff-Wiirmo-ICraft<br />

18, 430-436 (1966).<br />

[2n] Banner, M. L., and Melvillc, W. K. : On the separation of air flow over water nnvcs. ,I TM<br />

77, 825-842 (1976).<br />

131 B~mnlert, K., and Ficdler, K.: Hinterkantcn- und lteibun~~vcrluut in '~urbineti~c.l~:r~~fcIg11,lern.<br />

Forschg. 1ng.- Wca. 32, 133- 141 (1066).<br />

[4] Blenk, H., and Trienes, H.: Str~m~~ngsteehr~isclre 13eitriige zuni Wintlsch~rtz. (;r~~ntllagcn<br />

der Landteehnik. VDI-Verlag, No. 8, 1956.<br />

[5] I%rndrrhaw, P., and Grrgory, N.: The dotorminnbion of locnl tnrl~nlcnl, ~ltin fri(.I.ion fro~n<br />

observations in the viscous sub-laycr. AltC JtM 3202 (I!Nil).<br />

[O] Burgers, J.M.: The motion of a fluid in tl~c bountlnry Inyrr along a plnnc? ~nionl.l~ RII~~IWC.<br />

Proc. First Intern. Congrese Appl. Mech. 121, Delft (1824).<br />

[en] Caly, R.: Der Wiirmeiibergang an ciner in1 geschlosaencn Gehause rotierenden Sclleibc.<br />

Thc~is Anchon 1966.<br />

[7] Chapmann, D.R., and ICester, It. H.: Mcasnrenicnl~ of tnrbnlcnl skin friction in cylintlcrs<br />

in axial flow at subsonic and supersonic velocities. JAS 20, 441-448 (1083).<br />

[8] Colea, D.: The problem of the turbulent boundary laycr. ZAMY 5, 181-202 (1054).<br />

[Ba] Coles, D.: The law of the wake in the turbulent bonndary layer. JFM 1, 191 -226 (1986).<br />

[8b] Daily, J., and Nece, R.: Chamber dimension effecta on induccd flow npd friction resintnnce<br />

of enclosed rotating disks. J. Raaic Eng., Trans. ASMIP. Series D, 82, 217--242 (1960).<br />

[9] Doetsch, H.: Einige Versuche iiber den JCinfluss von Obcrf~ric~lcnstarrlngcn auf die Profileigensclraften,<br />

insbesondere auf den Profilwidcrstand irn Schncllflug. Jb. dt. Luftfnlirtforschung<br />

1, 88-97 (1939).<br />

[lo] Van Driest, E.R.: On turbulent flow near a wall. JAS 23, 1007-1011 (19N).<br />

1111 Dutton, R.A.: The accuracy of tneasuretnent of turbulent akin friction by means of surface<br />

P~tot tubcs and the distribution of skin friction on a flat plate. AltC IZM 3058 (1957).<br />

- 1121 - Eichclbrcnner, E.: La touche-limite tnrbulente B 1'inti.ricnr d'un dihdrc. Itech. A6ro. I'aria<br />

NO. 83. 3-8 (1961).<br />

1131 Elder, J.W.: The flow paat a flat plate of linitc width. JFM 9, 133-183 (1960).<br />

[I41 Fage, A,, and Waraap, J.H.: The eKects of turbulcncc and surfacc rougl~neas on the drag<br />

of circular cylinders. ARC RM 1283 (3930).<br />

[IR) Fnlkner, V.M.: The resi~tance of a smooth flat phtc \\it11 turbulent bonndary hycr. Aircraft<br />

Engineering 15 (1843).<br />

[I61 Favre, A., Dumaa, R., and Verollot, E.: Couche limite sur paroi plane porcuac avcr a~piration.<br />

Publications Scientifiques et Techniques du Ministdre de ]'Air, No. 377 (1961).<br />

[I71 Feindt, E. G.: Untersuchungen iibor die Abhangigkcit dcs Urnschlages laminar-turbulent<br />

von der Oberflachenrauhigkeit und der Drnckvertcilung. Disa. Braunschweig 1956. Jb.<br />

Schiffbautechn. Ges. 50, 180-203 (1957).<br />

[17a] Fomter, V.T.: Performance loss of modern stream-turbine plant due to surfaro r~ugl~nras.<br />

The Inst. of Mech. Eng., Preprint, London, 1967.<br />

[18] Gadd, G.E.: A note on the theory of the Stanton tube. ARC RM 3147 (1960).<br />

[I91 Gebers. F. : Ein Beitrag zur experimentallen Errnittlung des Wauscrwiderstandru gegrn bewogte<br />

Kiirper. Schiffbau 9, 436-452 and 475-485 (1008); also: Daa Bl~nlicl~keitclgesetz fur<br />

den Flaclienwider~tand in Wauaer gcradlinig fortbcwegter polierter I'lntten. Srhiffbau 22,<br />

687 - 030 (1920/21), continuation8.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!