18.06.2013 Views

Boundary Lyer Theory

Boundary Lyer Theory

Boundary Lyer Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2 (i<br />

TI. O~~tlittr of Imun~lnry-lsyw throry<br />

E~tin~nIin~t of houndnry-lnyer thickllr~s: 'rhc t,l~ickness ofa boundary layor whir11<br />

llas riot sepnrnlrtl can I)(! casily rst,irnnLrtl in thc following way. Whcrcas friction<br />

forccs can be ncglcctctl with rcspoct t.o incrt,ia forccs out,side tho bourltlary Ixynr,<br />

owing to low viscosit,y, thry arc of a comparable order of magnitrldc inside it. 'rhc<br />

inert,ia forcc prr nit volun~ is, as cxplninctl in Scct,ion l e, equal to Q 71 &L/~x. For<br />

a pIat,o of longlh 1 tho gr:ttlinnt arr/a:r is proportional to ll/l, where IJ tlrnotes thr<br />

velocil,y onLsitlv the! I)ountl:wy Inyrr. Ilct~rc Ihc irlnrl,in forcc is of tho ortlcr I, 1J2/1.<br />

On the othcr l~antl the friction forcc per nr~it volurnc is equal to at/@/, wllirll, on tho<br />

assurnpt~ion of lnrninnr flow, is cqunl t,o 11, a21t/i)?/2. The velocity gratliont al~/ay in a<br />

tlirrcLion prrl~rnrliculnr t,o t.l~c wall is of t,lm ordcr Ill6 so that thc friction forcc ])or<br />

~ti)il~ ~olt~tnv is i)~/&y - lI/d2. Proni the cotdit.iorl of equality of the friction :md<br />

inertia forcrs tho following rc.l:ll ion is obhined:<br />

U e UZ<br />

t4 82 - 1<br />

or, solving for I Itr Imuntl;~r~-layrr tlriclcr~rss Ot:<br />

The I~nlnr,ric:nl f:~rt,or wltid~ is, so f:w, st.ill untlct,crn~ined will be drduc:ctl Iatcr<br />

(C!l~:lp. VII) from tho exact solut,ion givcn by [I. 13lasius 141, and it will turn out<br />

t.llnt it is cqrlal 1.0 5, al)proxinlatcly. llrncc for lnmiarrr flow in the bountlary layer<br />

wn hnvo<br />

(2.1 a)<br />

'rho tlinlrt~sionlc~ss 1,our~lnr~-lnyer thirknrss, rcfcrrctf to the length of the plate, 1.<br />

twronles .<br />

wllorr R, clrnotcs tho ltcynoltls nunlber rclatod to the Icngth of the plat.c, 1. Tt is<br />

won from cqn. (2.1) tallat thc boundary-layer thickness is proportional in 4; and<br />

t,o I. If I is ropla.cetl hy the variable tlist~nce z from the leading edge of the plate,<br />

it is seen that d increases proporti~nxt~ely to ii. On tho other hand tho relative<br />

boul~(~ary-Iaycr t,I~ickncss O/i decrems with increasing Reynolds number as I I ~ R<br />

so that in tho limiting case of frictionless flow, with R -+ oo, tllc boundary-layer<br />

t.lrickness vanishes.<br />

We are now in a position to estimate the shearing stress zo on the wall, and<br />

consrq~~ontly, t.hr t,ot,ni drag. According to Newrton's law of friction (1.2) we have<br />

- - --<br />

t A ~~lore rigororts tlrfiniliott of Im~lrtclnry-Iayrr thicknrsn in given st the end of lhia section.<br />

wherc sl~bscrip~ 0 tlenotes the value at the wall, i. e. for y = 0. Witll thc estimate<br />

(au/a~)~ - U/d we obtain 7, - ,u U/d and, inserting the value of d from cqn. (2.11,<br />

we have<br />

We cart now for~n a dirncnsionlrss sl,rcss with rcTrrnrlrc lo I, llz, ns c~xpl:~ittc~cl<br />

in Cltnp. I, ant1 obtain<br />

c,, - =<br />

I'q .<br />

1<br />

- -<br />

The numrric:ll fartor follows from 11 Blasius's cxart solution, atttl is I 328, so tll:~~,<br />

the drag of a ~~lntr in parallrl 1nmin:~r flow 1)rromc.s<br />

Tltc following nt~mrrical rxamplc will serve t,o il11tst~~rt.c: t.hr l)rec:rcling c:st,i~rt:~ t.iolt :<br />

Laminar flow, stipulntctl here, is obt:~it~rtl, as is known r'ronl exprritnctlt,, for Itcynolds<br />

numbers CJllv not cxceccling :d)outt 6 x 10Ql.o 10% lpor 1nrgc.r I

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!