18.06.2013 Views

Boundary Lyer Theory

Boundary Lyer Theory

Boundary Lyer Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ITig. 10.2. Variation of flow vclority in a pipc in thc tranuition range at dihrent distances r<br />

from pilw axis, as 111cas11rrt1<br />

by .J. I n d ~ k nurn0~r A = ii.d/v = 2550; axial tlistnn~e z/d = 322; E x 4.27 m/scc (P 14.0 ltlsec); vclocitien given<br />

in nrlsrr. .rhr.rr vclorily plols, oblninnl with tho mid ol n Iwt-wire nncmomatrr, rle~nonstrate the i~~termitlont naluro<br />

vf llm Ilow in fltxl pcrindr nl Inrninnr nnd lurhu~lrnl flow aurcerrl crch othrr In time<br />

d<br />

Fig. 16.3. Intermittct~cy factor<br />

y for pipe flow in the transition<br />

range in ternls of the<br />

axial distance z for different<br />

Itrylrolds nurnbers R, as rneasr~rpd<br />

by J. Rotta [75]<br />

Ilrrc y = i dcnotcs rnnlinllnll~ly tllr-<br />

IHIIPIIL, IIII~ y = 0 1-onti1iunil5~y larnlrlnr<br />

Bnw<br />

rango frorn R 1 2300 t,o 2600 ovcr which transitpion is completctl. At Rcynolds<br />

rtllrnhtw rlcar l,l~c lowcr limit, the process of tmnsit,ion to f~lly dcvclopcd turbulent<br />

Hr)li(:J1 1,l1(, (lo,,r pS~,t:tl(lS ~ V ( T very I ~gc tIist,anccs mcasurctl in thousa~ids of tlialnctcrs.<br />

Mc~asrlrc:tnt~nt.s ol. i,llis kind have been reccntly amplified by J. Meseth [GO].<br />

a. Some exprrinicnlnl results on transition from laminar 1.0 L~~rl~ulrnt<br />

flow 453<br />

important ones being the prcssure distribution in tllr rxternal flow, tthr rl:lfurc- or<br />

tlir wall (ronghr~rss) and the nature of thr disturbanrrs in t,hc frro flow (ir~irtisiIj~<br />

of turbulcncc).<br />

Blimt Ilodies: A pnrticularly rcvn:wkal)lo phenomrnorl c:onrlrnt,rtl wit,l~ i,rt~nsil it111<br />

in thc hour~tlary laycr occurs with blunt bodies, for cxnl~~plc spl~cros or (:irc:~tl:ir<br />

cyIintl(:rs. It is seen frorn Figs. 1.4 :~nd 1.5 that thc r1r:i.g c:ocflicic~rlt or a sj)l~c:rr: or<br />

cylindcr tlccrcascs :~l)r~~pi,Iy at Itcyr~oltls rn~mbcrs R :-: IrI)/v of al)orlt :1 x lo5.<br />

, .I I his almpt drop in thc tlr:~~ corfficicnt, noticctl lid 11y 0. 12ifli.l [231 in rcsl;rt ion<br />

to sphc:rc?s, is a conscc~~~cnc:c of Lr:lrlsiUor~ it1 the I ~ I I I I ~ 1:iyc:r. I : ~ ~ '1'r:l.tlsil.iotl t.;tttsi*x<br />

tltc jminl. of scp:lr:lt.ion to move clowt~st.rcar~~ wllicll consitlrr:~l)ly tlt:crc~:~sos i,l~(:<br />

width of the walrc. 'l'hc truth of this cxpl:in:~tion was tlc1nonsi.r:il,nt1 i)y I,. I'r:r11111.1<br />

1411 wl~o nlor~ntctl n thin wire hoop sotncwl~:~t .-llrntl of tht: cquator of a si~llorc:. 'l'liis<br />

causes artificinlly the b0undar.y layer to 1)ccomc turbrllcnt at a lowcr Ilcynol~ls<br />

numhrr antl protluccs the same drop in drag as occurs w11t:n I,lic Itoyt~oltls IIIIIIIIIW<br />

is nmtla to incrrasc. 'l'hc stnolrc photogrii~)l~s in l'ig. 2.2.1- nntl 2.26 S I I ~ ) +:~rIj~<br />

~ ~ ~<br />

thr cxtcnt of t,hc waltc on a sphcrc: it1 thc sub-critic:~l Ilow rcgirnc t,llc \v:~ltc is uitlt.<br />

arid the drag is large, antl in t-bc supcr-crit,icnl regime it is narrow nntl thc clrag is stnall.<br />

The lattrr flow rcgimc was here crcatctl witll-the a.itl of L'rantltl's 't,ripping wire'.<br />

These experiments show coriclusively that the jump in the drag curve of a sphrrc<br />

is due to n boundary-layer cKect and is caused by tmr~sitio~~.<br />

Flat plate: Thc procrss of transition on a flat plate at zrro incitloncc is sonrrwhat.<br />

simplcr to understand than that on a blunt hotly. Thc prorcss of t.r:rnsit.ion in t.11~<br />

bountlary layer on a flat plate was first stntlictl by ,J. nl. nrwgrrs 161. 13. (:. van<br />

der IIcggc Zijncn 1411 antl Iat.er by M. ITanscn antl, it1 grca1.c.r clrt,ail. I1.y 11. I,.<br />

1)ryclrn 116: 17, 181. According t,o Cl~:lp. VlT, t,llc bo~~ntlnt~y-layer t.l~ivlztlrss on :i flat<br />

plntc incrcases in proportion to j/z, whcrc s tlcrmtlcs tl~c tlistancc from thc Ic:atling<br />

edge. Near the lending edge the bountlary Iaycr is always Iamit~art, l~cnorning i,urbulent<br />

further downstream. On a pl;~tc with a sharp lratling edge ant1 in a. tlormal<br />

air stream (i. c. of int,crisit,y of turbulcncc T = 0.6 %) t,mnsit.ior~ t.:il~s p l ; at, ~ ~ :I<br />

distance z from it, as detcrminecl hy<br />

On a Axt plaLe, in thc same way as in a pip, the c:rit,ic:il Itcyt~oltls n11~11)c.r ran 1)r<br />

incrcasctl by provitlitig for a dist,urbancc-frcc cxt.orna1 flow (vc.rp low ir~t.c*~lsil,y or<br />

tllrl)ulcncr), c/. Scc. XI1 tl 2.<br />

'I'r:~rtsit,ion is casirst to pcrrrivo Oy a s111tly of t.lw vrloc~i1.y tlisl.t~il~i~iiot~ ill (11t-<br />

1)oun~Iary la,ycr. As SCCII from Fig. 2.23, t~r:insit,io~~ is shown ~)rnt~ti~~(-~~I,l~y<br />

1j.y :I, sit~ltlt:~~<br />

incrrase In the boundary-layer tliick~lcss. 111 a lalninar l)ou~iclarv Iavor tlrc tli~ncq~ion-<br />

. .<br />

-. . .. ..<br />

less I~ountlary-1;~ycr trhickricss, d /i v :,;/Urn , rcrnnins rorlst,:~nt ant1 rtl11;11, :I l)pro,yimatcly,<br />

to 5. 'I'he dimcnsiortlcss boutidary-layrr t01icknrss is scct~ plot,t.c~tl :~z:~ir~st.<br />

thc length Rcynolds numbcr R, =-: U, z/v in l'ig. 2.2:) nlrmtly mc!~lt~iot~rtl: :I(,<br />

R, >. 3.2 x 105 n sutltlcn incrcaso ill 1.llo I)o~~t~tl:~~r~-l:~~~~r<br />

I.l~i(.l

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!