11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

8 Chapter 2: <strong>Sp<strong>in</strong></strong> <strong>Dynamics</strong>: Overview and Analysis <strong>of</strong> 2D Systems<br />

2.2 <strong>Dynamics</strong> <strong>of</strong> a Localized <strong>Sp<strong>in</strong></strong><br />

A localized sp<strong>in</strong> ŝ, like a nuclear sp<strong>in</strong>, or the sp<strong>in</strong> <strong>of</strong> a magnetic impurity <strong>in</strong> a solid,<br />

precesses <strong>in</strong> an external magnetic field B due to the Zeeman <strong>in</strong>teraction with Hamiltonian<br />

H Z = −γ g ŝB, where γ g is the correspond<strong>in</strong>g gyromagnetic ratio <strong>of</strong> the nuclear sp<strong>in</strong> or<br />

magnetic impuritysp<strong>in</strong>, respectively, whichwewill set equal toone, unlessneededexplicitly.<br />

This sp<strong>in</strong> dynamics is governed by the Bloch equation <strong>of</strong> a localized sp<strong>in</strong>,<br />

∂ t ŝ = γ g ŝ×B. (2.4)<br />

This equation is identical to the Heisenberg equation ∂ t ŝ = −i[ŝ,H Z ] for the quantum<br />

mechanical sp<strong>in</strong> operator ŝ <strong>of</strong> an S = 1/2-sp<strong>in</strong>, <strong>in</strong>teract<strong>in</strong>g with the external magnetic<br />

field B due to the Zeeman <strong>in</strong>teraction with Hamiltonian H Z . The solution <strong>of</strong> the Bloch<br />

equation for a magnetic field po<strong>in</strong>t<strong>in</strong>g <strong>in</strong> the z-direction is ŝ z (t) = ŝ z (0), while the x- and<br />

y- components <strong>of</strong> the sp<strong>in</strong> are precess<strong>in</strong>g with frequency ω 0 = γ g B around the z-axis,<br />

ŝ x (t) = ŝ x (0)cosω 0 t+ŝ y (0)s<strong>in</strong>ω 0 t, ŝ y (t) = −ŝ x (0)s<strong>in</strong>ω 0 t+ŝ y (0)cosω 0 t. S<strong>in</strong>ce a localized<br />

sp<strong>in</strong><strong>in</strong>teracts withits environment by exchange <strong>in</strong>teraction and magnetic dipole<strong>in</strong>teraction,<br />

the precession will dephase after a time τ 2 , and the z-component <strong>of</strong> the sp<strong>in</strong> relaxes to its<br />

equilibrium value s z0 with<strong>in</strong> a relaxation time τ 1 . This modifies the Bloch equations to the<br />

phenomenological equations,<br />

∂ t ŝ x = γ g (ŝ y B z −ŝ z B y )− 1 τ 2<br />

ŝ x<br />

∂ t ŝ y = γ g (ŝ z B x −ŝ x B z )− 1 τ 2<br />

ŝ y<br />

∂ t ŝ z = γ g (ŝ x B y −ŝ y B x )− 1 τ 1<br />

(ŝ z −s z0 ). (2.5)<br />

2.3 <strong>Sp<strong>in</strong></strong> <strong>Dynamics</strong> <strong>of</strong> <strong>It<strong>in</strong>erant</strong> Electrons<br />

2.3.1 Ballistic <strong>Sp<strong>in</strong></strong> <strong>Dynamics</strong><br />

Start<strong>in</strong>g from Dirac equation we have seen that one obta<strong>in</strong>s <strong>in</strong> addition to the<br />

Zeeman term a term which couples the sp<strong>in</strong> s with the momentum p <strong>of</strong> the electrons, the<br />

sp<strong>in</strong>-orbit coupl<strong>in</strong>g<br />

H SO = − µ B<br />

2m e0 c 2ŝ p×E = −ŝB SO(p), (2.6)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!