11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

70 Chapter 4: Direction Dependence <strong>of</strong> <strong>Sp<strong>in</strong></strong> Relaxation and Diffusive-Ballistic Crossover<br />

4.2 <strong>Sp<strong>in</strong></strong> Relaxation anisotropy <strong>in</strong> the (001) system<br />

4.2.1 2D system<br />

We rotate the system <strong>in</strong>-plane through the angle θ (the angle θ = π/4 is equivalent<br />

to [110]). This does not effect the Rashba term but changes the Dresselhaus one to[CWd07,<br />

WJW10]<br />

1<br />

γ D<br />

H D[001] = σ y k y cos(2θ)(〈k 2 z 〉−k2 x )−σ xk x cos(2θ)(〈k 2 z 〉−k2 y )<br />

−σ y k x<br />

1<br />

2 s<strong>in</strong>(2θ)(k2 x −k2 y −2〈k2 z 〉)<br />

1<br />

+σ x k y<br />

2 s<strong>in</strong>(2θ)(k2 x −k2 y +2〈k2 z 〉), (4.9)<br />

with the wave vectors k i . The result<strong>in</strong>g Cooperon Hamiltonian, <strong>in</strong>clud<strong>in</strong>g Rashba and<br />

Dresselhaus SOC, reads then<br />

H c = (Q x +α x1 S x +(α x2 −q 2 )S y ) 2 +(Q y +(α x2 +q 2 )S x −α x1 S y ) 2 + q2 s3<br />

2 (S2 x +S 2 y),<br />

where we set<br />

(4.10)<br />

q 2 s3<br />

2 = ( m 2 eE F γ D<br />

) 2, (4.11)<br />

α x1 = 1 2 m eγ D cos(2θ)((m e v) 2 −4〈kz 2 〉), (4.12)<br />

α x2 = − 1 2 m eγ D s<strong>in</strong>(2θ)((m e v) 2 −4〈kz〉) 2 (4.13)<br />

( )<br />

=<br />

q 1 −√<br />

q<br />

2<br />

s3<br />

2<br />

s<strong>in</strong>(2θ) (4.14)<br />

= 2m e˜α 1 s<strong>in</strong>(2θ), (4.15)<br />

with q 1 = 2m e α 1 , q 2 = 2m e α 2 . We see that the part <strong>of</strong> the Hamiltonian which cannot be<br />

written as a vector field and is due to cubic Dresselhaus SOC does not depend on the wire<br />

direction <strong>in</strong> the (001) plane.<br />

Special case: Only l<strong>in</strong>. Dresselhaus SOC equal to Rashba SOC<br />

As a special example for the 2D case we set q s3 = 0 and q 1 = q 2 . To simplify<br />

the search for vanish<strong>in</strong>g sp<strong>in</strong> relaxation we go to polar coord<strong>in</strong>ates. Apply<strong>in</strong>g free wave

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!